在矩形ABCD中,AB=5,BC=12,⊙A的半徑為2,若以C為圓心作一個(gè)圓,使⊙C與⊙A相切,那么⊙C的半徑為             
11或15

分析:連接AC,由勾股定理得,圓心距AC=13,再分兩圓外切時(shí)和兩圓內(nèi)切時(shí),求圓C的半徑.
解答:
解:連接AC,由勾股定理得,圓心距AC==13,
∴當(dāng)兩圓外切時(shí),圓C的半徑=13-2=11,當(dāng)兩圓內(nèi)切時(shí),圓C的半徑=2+13=15.
點(diǎn)評(píng):本題考查了兩圓相切時(shí),兩圓的半徑與圓心距的關(guān)系,注意有兩種情況.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖, AB與⊙O相切于點(diǎn)B,線(xiàn)段OA與弦BC垂直于點(diǎn)D,∠AOB=60°,BC=4cm,則切線(xiàn)AB=       cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,點(diǎn)O為優(yōu)弧所在圓的圓心,∠AOC=108°,點(diǎn)DAB的延長(zhǎng)線(xiàn)上, BD=BC, 則∠D的度數(shù)為(       )
A.20°B.27°
C.30°D.54°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知三角形,若過(guò)點(diǎn)、點(diǎn)作圓,那么下面說(shuō)法正確的是(   )
A.這樣的圓只能作出一個(gè)
B.這樣的圓只能作出兩個(gè)
C.點(diǎn)不在該圓的外部,就在該圓的內(nèi)部
D.圓心分布在的中垂線(xiàn)上

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,⊙A、⊙B、⊙C兩兩不相交,且半徑都是2cm,
則圖中三個(gè)扇形(陰影部分)的面積之和是       cm2.  

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,在⊙O的內(nèi)接△ABC中,∠ABC=30°,AC的延長(zhǎng)線(xiàn)與過(guò)點(diǎn)B的⊙O的切線(xiàn)相交于點(diǎn)D,若⊙O的半徑OC=1,且BDOC,則CD的長(zhǎng)為(     ). 
A.B.
C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,四個(gè)半徑為1的小圓都過(guò)大圓圓心且與大圓相內(nèi)切,

陰影部分的面積為【   】
A.B.-4
C.D.+1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

 

如圖,⊙O的直徑AB=4,C為圓周上一點(diǎn),AC=2,過(guò)點(diǎn)C作⊙O的切線(xiàn)l,過(guò)點(diǎn)Bl的垂線(xiàn)BD,垂足為D,BD與⊙O交于點(diǎn) E
求∠AEC的度數(shù);
(2). (3分) 【系統(tǒng)題型:作答題】 【閱卷方式:手動(dòng)】求證:四邊形OBEC是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,⊙O是△ABC的外接圓,OD⊥AB于點(diǎn)D、交⊙O于點(diǎn)E,∠C=60°, 如
果⊙O的半徑為2,那么OD=        

查看答案和解析>>

同步練習(xí)冊(cè)答案