4、已知,直角坐標(biāo)系中,點E(-4,2),F(xiàn)(-1,-1),以O(shè)為位似中心,按比例尺2:1把△EFO縮小,則點E的對應(yīng)點E′的坐標(biāo)為(  )
分析:利用位似比為1:2,可求得點E的對應(yīng)點E′的坐標(biāo)為(2,-1)或(-2,1).注意分兩種情況計算.
解答:解:∵E(-4,2),位似比為1:2,
∴點E的對應(yīng)點E′的坐標(biāo)為(2,-1)或(-2,1).
故選A.
點評:本題考查了位似的相關(guān)知識,位似是相似的特殊形式,位似比等于相似比.注意位似的兩種位置關(guān)系.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

21、已知平面直角坐標(biāo)系中,△ABC的三個頂點的坐標(biāo)分別為A(2,2),B(1,-1),C(3,0).
(1)在圖1中,畫出以點O為位似中心,放大△ABC到原來2倍的△A′B′C′;
(2)若點P是AB邊上一點,平移△ABC后,點P的對應(yīng)點的坐標(biāo)是P′(a+3,b-2),在圖2中畫出平移后的△A′B′C′.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知平面直角坐標(biāo)系中,A、B、C三點的坐標(biāo)分別是(0,2)、(0,-2),(4,-2).
(1)請在給出的直角坐標(biāo)系xOy中畫出△ABC,設(shè)AC交X軸于點D,連接BD,證明:OD平分∠ADB;
(2)請在x軸上找出點E,使四邊形AOCE為平行四邊形,寫出E點坐標(biāo),并證明四邊形AOCE是平行四邊形;
(3)設(shè)經(jīng)過點B,且以CE所在直線為對稱軸的拋物線的頂點為F,求直線FA的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知在直角坐標(biāo)系中,點A的坐標(biāo)是(-3,1),將線段OA繞著點O順時針旋轉(zhuǎn)90°得到OB.
(1)求點B的坐標(biāo);
(2)求過A、B、O三點的拋物線的解析式;
(3)設(shè)點B關(guān)于拋物線的對稱軸?的對稱點為C,求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知平面直角坐標(biāo)系中三點的坐標(biāo)分別為:A(4、5),B(-2,2),C(3,0)
(1)畫出它以原點O為對稱中心的△A′B′C′;
(2)寫出 A′,B′,C′三點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知在直角坐標(biāo)系中,點A(2x-8,2-x)在第三象限,且x為整數(shù),求點A的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案