【題目】如圖,AB是⊙O的直徑,∠ABT=45°,AT=AB.
(1)求證:AT是⊙O的切線;
(2)連接OT交⊙O于點C,連接AC,求tan∠TAC.
【答案】(1)見解析;(2).
【解析】
試題分析:(1)根據等腰三角形的性質求得∠TAB=90°,得出TA⊥AB,從而證得AT是⊙O的切線;
(2)作CD⊥AT于D,設OA=x,則AT=2x,根據勾股定理得出OT=x,TC=(﹣1)x,由CD⊥AT,TA⊥AB得出CD∥AB,根據平行線分線段成比例定理得出==,即==,從而求得CD=(1﹣)x,AD=2x﹣2(1﹣)x=x,然后解正切函數即可求得.
解:(1)∵∠ABT=45°,AT=AB.
∴∠TAB=90°,
∴TA⊥AB,
∴AT是⊙O的切線;
(2)作CD⊥AT于D,
∵TA⊥AB,TA=AB=2OA,
設OA=x,則AT=2x,
∴OT=x,
∴TC=(﹣1)x,
∵CD⊥AT,TA⊥AB
∴CD∥AB,
∴==,即==,
∴CD=(1﹣)x,TD=2(1﹣)x,
∴AD=2x﹣2(1﹣)x=x,
∴tan∠TAC===.
科目:初中數學 來源: 題型:
【題目】如圖,已知反比例函數y=的圖象與一次函數y=ax+b的圖象相交于點A(1,4)和點B(n,﹣2).
(1)求反比例函數和一次函數的解析式;
(2)當一次函數的值小于反比例函數的值時,直接寫出x的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】用科學記數法表示0.00001032,下列正確的是( )
A. 0.1032×10-4 B. 1.032×103 C. 10.32×10-6 D. 1.032×10-5
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)如圖(1),在△ABC中,AB>AC>BC,∠ACB=80°,點D、E分別在線段BA、AB的延長線上,且AD=AC,BE=BC,則∠DCE= ;
(2)如圖(2),在△ABC中,AB>AC>BC,∠ACB=80°,點D、E分別在邊AB上,且AD=AC,BE=BC,求∠DCE的度數;
(3)在△ABC中,AB>AC>BC,∠ACB=80°,點D、E分別在直線AB上,且AD=AC,BE=BC,則∠求DCE的度數(直接寫出答案);
(4)如圖(3),在△ABC中,AB=14,AC=15,BC=13,點D、E在直線AB上,且AD=AC,BE=BC.請根據題意把圖形補畫完整,并在圖形的下方直接寫出△DCE的面積.(如果有多種情況,圖形不夠用請自己畫出,各種情況用一個圖形單獨表示).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,等邊△ABC邊長為2,動點P從點A出發(fā),以每秒1個單位長度的速度,沿A→B→C→A的方向運動,到達點A時停止.設運動時間為x秒,y=PC,則y關于x函數的圖象大致為( )
A. B.
C. D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在邊長為1的小正方形組成的方格紙中,有一個以格點為頂點的△ABC.
(1)試根據三角形三邊關系,判斷△ABC的形狀;
(2)在方格紙中利用直尺分別畫出AB、BC的垂直平分線,交點為O.觀察點O的位置,你能得出怎樣的結論?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】數學家莫倫在1925年發(fā)現了世界上第一個完美長方形.如圖是一個完美長方形,它恰能被分割成10個大小不同的正方形,其中標注番號1的正方形邊長為5,則這個完美長方形的面積為 .
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com