(2007•北京)我們知道:有兩條邊相等的三角形叫做等腰三角形.類似地,我們定義:至少有一組對邊相等的四邊形叫做等對邊四邊形.
(1)請寫出一個你學過的特殊四邊形中是等對邊四邊形的圖形的名稱;
(2)如圖,在△ABC中,點D,E分別在AB,AC上,設(shè)CD,BE相交于點O,
若∠A=60°,∠DCB=∠EBC=∠A.請你寫出圖中一個與∠A相等的角,并猜想圖中哪個四邊形是等對邊四邊形;
(3)在△ABC中,如果∠A是不等于60°的銳角,點D,E分別在AB,AC上,且∠DCB=∠EBC=∠A.探究:滿足上述條件的圖形中是否存在等對邊四邊形,并證明你的結(jié)論.

【答案】分析:(1)本題理解等對邊四邊形的圖形的定義,平行四邊形,等腰梯形就是.
(2)與∠A相等的角是∠BOD(或∠COE),四邊形DBCE是等對邊四邊形;
(3)作CG⊥BE于G點,作BF⊥CD交CD延長線于F點.易證△BCF≌△CBG,進而證明△BDF≌△CEG,所以BD=CE.所以四邊形DBCE是等邊四邊形.
解答:解:(1)回答正確的給(1分)(如:平行四邊形、等腰梯形等).

(2)答:與∠A相等的角是∠BOD(或∠COE),
∵∠BOD=∠OBC+∠OCB=30°+30°=60°,
∴∠A=∠BOD,
猜想:四邊形DBCE是等對邊四邊形;

(3)答:此時存在等對邊四邊形,是四邊形DBCE.
證法一:如圖,作CG⊥BE于G點,作BF⊥CD交CD延長線于F點.
∵∠DCB=∠EBC=∠A,BC為公共邊,
∴△BCF≌△CBG,
∴BF=CG,
∵∠BDF=∠ABE+∠EBC+∠DCB,∠BEC=∠ABE+∠A,
∴∠BDF=∠BEC,
∴△BDF≌△CEG,
∴BD=CE
∴四邊形DBCE是等對邊四邊形.

證法二:如圖,以C為頂點作∠FCB=∠DBC,CF交BE于F點.
∵∠DCB=∠EBC=∠A,BC為公共邊,
∴在△BDC與△CFB中,

∴△BDC≌△CFB(ASA),
∴BD=CF,∠BDC=∠CFB,
∴∠ADC=∠CFE,
∵∠ADC=∠DCB+∠EBC+∠ABE,∠FEC=∠A+∠ABE,
∴∠ADC=∠FEC,
∴∠FEC=∠CFE,
∴CF=CE,
∴BD=CE,
∴四邊形DBCE是等對邊四邊形.
說明:當AB=AC時,BD=CE仍成立.只有此證法,只給(1分).
點評:解決本題的關(guān)鍵是理解等對邊四邊形的定義,把證明BD=CE的問題轉(zhuǎn)化為證明三角形全等的問題.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:2007年全國中考數(shù)學試題匯編《三角形》(16)(解析版) 題型:解答題

(2007•北京)已知:如圖,A是⊙O上一點,半徑OC的延長線與過點A的直線交于B點,OC=BC,AC=OB.
(1)求證:AB是⊙O的切線;
(2)若∠ACD=45°,OC=2,求弦CD的長.

查看答案和解析>>

科目:初中數(shù)學 來源:2007年全國中考數(shù)學試題匯編《整式》(04)(解析版) 題型:解答題

(2007•北京)已知x2-4=0,求代數(shù)式x(x+1)2-x(x2+x)-x-7的值.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年北京市石景山區(qū)中考數(shù)學一模試卷(解析版) 題型:解答題

(2007•北京)已知:如圖,A是⊙O上一點,半徑OC的延長線與過點A的直線交于B點,OC=BC,AC=OB.
(1)求證:AB是⊙O的切線;
(2)若∠ACD=45°,OC=2,求弦CD的長.

查看答案和解析>>

科目:初中數(shù)學 來源:2007年北京市中考數(shù)學試卷(解析版) 題型:解答題

(2007•北京)已知:如圖,A是⊙O上一點,半徑OC的延長線與過點A的直線交于B點,OC=BC,AC=OB.
(1)求證:AB是⊙O的切線;
(2)若∠ACD=45°,OC=2,求弦CD的長.

查看答案和解析>>

科目:初中數(shù)學 來源:2007年北京市中考數(shù)學試卷(解析版) 題型:解答題

(2007•北京)已知:如圖,OP是∠AOC和∠BOD的平分線,OA=OC,OB=OD.求證:AB=CD.

查看答案和解析>>

同步練習冊答案