如圖,等邊△OAB和等邊△AFE的一邊都在x軸上,雙曲線y= (k>0)經(jīng)過邊OB的中點(diǎn)C和AE的中點(diǎn)D.已知等邊△OAB的邊長為4.

(1)求該雙曲線所表示的函數(shù)解析式;

(2)求等邊△AEF的邊長.

考點(diǎn):    反比例函數(shù)綜合題。

專題:    代數(shù)幾何綜合題。

分析:    (1)過點(diǎn)C作CG⊥OA于點(diǎn)G,根據(jù)等邊三角形的性質(zhì)求出OG、CG的長度,從而得到點(diǎn)C的坐標(biāo),再利用 待定系數(shù)法求反比例函數(shù)解析式列式計(jì)算即可得解;

(2)過點(diǎn)D作DH⊥AF于點(diǎn)H,設(shè)AH=a,根據(jù)等邊三角形的性質(zhì)表示出DH的長度,然后表示出點(diǎn)D的坐標(biāo),再把點(diǎn)D的坐標(biāo)代入反比例函數(shù)解析式,解方程得到a的值,從而得解.

解答:    解:(1)過點(diǎn)C作CG⊥OA于點(diǎn)G,

∵點(diǎn)C是等邊△OAB的邊OB的中點(diǎn),

∴OC=2,∠ A OB=60°,

∴OG=1,CG= ,

∴點(diǎn)C的坐標(biāo)是(1, ),

由 = ,得:k= ,

∴該雙曲線所表示的函數(shù)解析式為y= ;

(2)過點(diǎn)D作DH⊥AF于點(diǎn)H,設(shè)AH=a,則DH= a.

∴點(diǎn)D的坐標(biāo)為(4+a, ),

∵點(diǎn)D是雙曲線y= 上的點(diǎn),

由xy= ,得 (4+a)= ,

即:a2+4a-1=0,

解得:a1= -2,a2=- -2(舍去),

∴AD=2AH=2 -4,

∴等邊△AEF的邊長是2AD=4 -8.

點(diǎn)評:    本題是對反比例函數(shù)的綜合考查,包括待定系數(shù)法求反比例函數(shù)解析式,等邊三角形的性質(zhì),解一元二次方程,難度不大,作出輔助線,表示出點(diǎn)C、D的坐標(biāo)是解題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•麗水)如圖,等邊△OAB和等邊△AFE的一邊都在x軸上,雙曲線y=
kx
(k>0)經(jīng)過邊OB的中點(diǎn)C和AE的中點(diǎn)D.已知等邊△OAB的邊長為4.
(1)求該雙曲線所表示的函數(shù)解析式;
(2)求等邊△AEF的邊長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012-2013學(xué)年浙江省杭州市蕭山區(qū)瓜瀝一中九年級(上)月考數(shù)學(xué)試卷(10月份)(解析版) 題型:解答題

如圖,等邊△OAB和等邊△AFE的一邊都在x軸上,雙曲線y=(k>0)經(jīng)過邊OB的中點(diǎn)C和AE的中點(diǎn)D.已知等邊△OAB的邊長為4.
(1)求該雙曲線所表示的函數(shù)解析式;
(2)求等邊△AEF的邊長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012-2013學(xué)年浙教版九年級(上)第一次月考數(shù)學(xué)試卷(六)(解析版) 題型:解答題

如圖,等邊△OAB和等邊△AFE的一邊都在x軸上,雙曲線y=(k>0)經(jīng)過邊OB的中點(diǎn)C和AE的中點(diǎn)D.已知等邊△OAB的邊長為4.
(1)求該雙曲線所表示的函數(shù)解析式;
(2)求等邊△AEF的邊長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年四川省瀘州市藍(lán)田中學(xué)中考數(shù)學(xué)模擬試卷(一)(解析版) 題型:解答題

如圖,等邊△OAB和等邊△AFE的一邊都在x軸上,雙曲線y=(k>0)經(jīng)過邊OB的中點(diǎn)C和AE的中點(diǎn)D.已知等邊△OAB的邊長為4.
(1)求該雙曲線所表示的函數(shù)解析式;
(2)求等邊△AEF的邊長.

查看答案和解析>>

同步練習(xí)冊答案