在△ABC中,已知AC=3,BC=4,AB=5,那么下列結(jié)論成立的是( )
A.sinA=
B.cosA=
C.tanA=
D.cotA=
【答案】分析:根據(jù)三邊長度判斷三角形的形狀;利用銳角三角函數(shù)的定義求解.
解答:解:在△ABC中,已知AC=3,BC=4,AB=5,
則△ABC是直角三角形,且AB是斜邊.
因而sinA=,
cosA==
tanA=,
cotA=
所以,結(jié)論成立的是cosA=
故選B.
點(diǎn)評:本題重點(diǎn)考查了三角函數(shù)的定義,是需要識記的內(nèi)容.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

26、(1)在△ABC中,已知∠B=∠C+20°,∠A+∠B=140°,求△ABC的各個內(nèi)角的度數(shù)是多少?
(2)如圖,將△ABC紙片沿MN折疊所得的粗實(shí)線圍成的圖形的面積與原△ABC的面積之比為3:4,且圖中3個陰影三角形的面積之和為12cm2,則重疊部分的面積為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2009•雅安)在△ABC中,已知∠A、∠B都是銳角,且sinA=
3
2
,tanB=1,則∠C的度數(shù)為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在△ABC中,已知∠A=80°,則∠B、∠C的角平分線相交所成的鈍角為
130°
130°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在△ABC中,已知AB=AC,∠A=36°,AB的垂直平分線MN交AC于D.在下列結(jié)論中:①∠C=72°;②BD是∠ABC的平分線;③∠BDC=100°;④△ABD是等腰三角形;⑤AD=BD=BC.上述結(jié)論中,正確的有
①②④⑤
①②④⑤
.(填寫序號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在△ABC中,已知∠A=∠C-∠B,且∠A=70°,則∠B的度數(shù)=
20°
20°

查看答案和解析>>

同步練習(xí)冊答案