【題目】如圖,四邊形ABCD中,AD∥BC,點E在CD上,EA,EB分別平分∠DAB和∠CBA,設AD=x,BC=y且(x﹣3)2+|y﹣4|=0.求AB的長.
【答案】7
【解析】
由非負性可求AD=3,BC=4,如圖,在AB上截取AH=AD=3,連接HE,由“SAS”可證△DAE≌△HAE,可得∠DEA=∠AEH,由“ASA”可證△BEH≌△BEC,可得BH=BC=4,即可求解.
∵(x﹣3)2+|y﹣4|=0,
∴x-3=0,y-4=0,
∴x=3,y=4,
∴AD=3,BC=4,
如圖,在AB上截取AH=AD=3,連接HE,
∵AD∥BC,
∴∠DAB+∠ABC=180°,
∵EA,EB分別平分∠DAB和∠CBA,
∴∠DAE=∠EAB=∠DAB,∠EBC=∠EBA=∠ABC,
∴∠EAB+∠EBA=90°,
∴∠AEB=90°,
∴∠DEA+∠BEC=90°,
∵∠DAE=∠EAH,AD=AH,AE=AE,
∴△DAE≌△HAE(SAS)
∴∠DEA=∠AEH,
∵∠AEH+∠BEH=90°,∠DEA+∠BEC=90°,
∴∠HEB=∠CEB,且BE=BE,∠CBE=∠HBE,
∴△BEH≌△BEC(ASA)
∴BH=BC=4,
∴AB=AH+BH=7.
科目:初中數(shù)學 來源: 題型:
【題目】一個能被13整除的自然數(shù)我們稱為“十三數(shù)”,“十三數(shù)”的特征是:若把這個自然數(shù)的末三位與末三位以前的數(shù)字組成的數(shù)之差,如果能被13整除,那么這個自然數(shù)就一定能被13整除.例如:判斷383357能不能被13整除,這個數(shù)的末三位數(shù)字是357,末三位以前的數(shù)字組成的數(shù)是383,這兩個數(shù)的差是383﹣357=26,26能被13整除,因此383357是“十三數(shù)”.
(1)判斷3253和254514是否為“十三數(shù)”,請說明理由.
(2)若一個四位自然數(shù),千位數(shù)字和十位數(shù)字相同,百位數(shù)字與個位數(shù)字相同,則稱這個四位數(shù)為“間同數(shù)”.
①求證:任意一個四位“間同數(shù)”能被101整除.
②若一個四位自然數(shù)既是“十三數(shù)”,又是“間同數(shù)”,求滿足條件的所有四位數(shù)的最大值與最小值之差.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,若O為BC邊的中點,則必有:AB2+AC2=2AO2+2BO2成立.依據(jù)以上結論,解決如下問題:如圖,在矩形DEFG中,已知DE=4,EF=3,點P在以DE為直徑的半圓上運動,則PF2+PG2的最小值為( 。
A. B. C. 34 D. 10
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某游樂場一轉角滑梯如圖所示,滑梯立柱AB、CD均垂直于地面,點E在線段BD上,在C點測得點A的仰角為30°,點E的俯角也為30°,測得B、E間距離為10米,立柱AB高30米.求立柱CD的高(結果保留根號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明家1至6月份的用水量統(tǒng)計如圖所示,關于這組數(shù)據(jù),下列說法錯誤的是( ).
A、眾數(shù)是6噸 B、平均數(shù)是5噸 C、中位數(shù)是5噸 D、方差是
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】讀題畫圖計算并作答
畫線段AB=3 cm,在線段AB上取一點K,使AK=BK,在線段AB的延長線上取一點C,使AC=3BC,在線段BA的延長線取一點D,使AD=AB.
(1)求線段BC、DC的長?
(2)點K是哪些線段的中點?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,點D在等邊△ABC的邊AB上,作DG∥BC,交AC于點G,點F在邊AC上,連接DF并延長,交BC的延長線于點E,F(xiàn)E=FD.求證:AD=CE.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將等腰直角三角板ABC的直角頂點C放在直線l上,從另兩個頂點A、B分別作l的垂線,垂足分別為D、E.
(1)找出圖中的全等三角形,并加以證明;
(2)若直角梯形DABE的面積為a,求AD+BE的值(用含有a的式子表示).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知△ABC的三個頂點坐標分別是A(1,1),B(4,1),C(3,3).
(1)將△ABC向下平移5個單位后得到△A1B1C1,請畫出△A1B1C1;
(2)將△ABC繞原點O逆時針旋轉90°后得到△A2B2C2,請畫出△A2B2C2;
(3)判斷以O,A1,B為頂點的三角形的形狀.(無須說明理由)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com