【題目】如圖,∠1+∠2=180°,∠B=∠3.
(1)判斷DE與BC的位置關(guān)系,并說明理由:
解:結(jié)論:______________.
理由:∵∠1+∠2=180°,
∴_________________
∴∠ADE=∠3,
∵∠B=∠3
∴______________
∴DE∥BC;
(2)若∠C=65°,求∠DEC的度數(shù).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】今年“五一”節(jié),小明外出爬山,他從山腳爬到山頂?shù)倪^程中,中途休息了一段時間.設(shè)他從山腳出發(fā)后所用的時間為t(分鐘),所走的路程為s(米),s與t之間的函數(shù)關(guān)系如圖所示,下列說法錯誤的是( )
A.小明中途休息用了20分鐘
B.小明休息前爬山的平均速度為每分鐘70米
C.小明在上述過程中所走的路程為6600米
D.小明休息前爬山的平均速度大于休息后爬山的平均速度
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠ACB=90°,AC=BC=4,點D為AB的中點,M,N分別在BC,AC上,且BM=CN現(xiàn)有以下四個結(jié)論:
①DN=DM; ② ∠NDM=90°; ③ 四邊形CMDN的面積為4; ④△CMN的面積最大為2.
其中正確的結(jié)論有( )
A. ①②④; B. ①②③; C. ②③④; D. ①②③④.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】火車站有某公司待運的甲種貨物1530噸,乙種貨物1150噸,現(xiàn)計劃用50節(jié)A,B兩種型號的車廂將這批貨物運至北京,已知甲種貨物35噸和乙種貨物15噸可裝滿一節(jié)A型貨廂,甲貨物25噸和乙種貨物35噸可裝滿一節(jié)B型貨廂,按此要求安排A,B兩種貨廂的節(jié)數(shù),共有哪幾種方案?請你設(shè)計出來.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,射線AM∥BN,點E,F,D在射線AM上,點C在射線BN上,且∠BCD=∠A,BE平分∠ABF,BD平分∠FBC.
(1)求證:AB∥CD.
(2)如果平行移動CD,那么∠AFB與∠ADB的比值是否發(fā)生變化?若變化,找出變化規(guī)律;若不變,求出這兩個角的比值.
(3)如果∠A=100°,那么在平行移動CD的過程中,是否存在某一時刻,使∠AEB=∠BDC?若存在,求出此時∠AEB的度數(shù);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為2,其面積標記為S1,以CD為斜邊作等腰直角三角形,以該等腰直角三角形的一條直角邊為邊向外作正方形,其面積標記為S2,…,按照此規(guī)律繼續(xù)下去,則S2018的值為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,直線m與直線n垂直相交于O,點A在直線m上運動,點B 在直線n上運動,AC、BC分別是∠BAO和∠ABO的角平分線.
(1)求∠ACB的大;
(2)如圖2,若BD是△AOB的外角∠OBE的角平分線,BD與AC相交于點D,點A、B在運動的過程中,∠ADB的大小是否會發(fā)生變化?若發(fā)生變化,請說明理由;若不發(fā)生變化,試求出其值;
(3)如圖3,過C作直線與AB交于F,且滿足∠AGO-∠BCF=45°,求證:CF∥OB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一列數(shù)-1,2,-1,2,2,-1,2,2,2,-1,…其中相鄰的兩個-1被2隔開,第n對-1之問有n個2,則第21個數(shù)是______,這一列數(shù)的前2019個數(shù)的和為______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com