PA、PB分別切⊙O于點(diǎn)A、B,∠PAB=60°,點(diǎn)C在⊙O上,則∠ACB的度數(shù)為________.

60°或120°
分析:連接OA、OB,根據(jù)切線的性質(zhì)得出∠OAP的度數(shù),∠OBP的度數(shù);再根據(jù)四邊形的內(nèi)角和是360°,求出∠AOB的度數(shù),有圓周角定理或圓內(nèi)接四邊形的性質(zhì),求出∠ACB的度數(shù)即可.
解答:連接OA、OB.
∵PA,PB分別切⊙O于點(diǎn)A,B,
∴OA⊥PA,OB⊥PB;
∴∠PAO=∠PBO=90°;
又∵∠APB=60°,
∴在四邊形AOBP中,∠AOB=360°-90°-90°-60°=120°,
∴∠ADB=×∠AOB=×120°=60°,
即當(dāng)C在D處時(shí),∠ACB=60°.
在四邊形ADBC中,∠ACB=180°-∠ADB=180°-60°=120°.
于是∠ACB的度數(shù)為60°或120°,
故答案為:60°或120°.
點(diǎn)評(píng):本題考查的是切線的性質(zhì)定理,圓內(nèi)接四邊形的性質(zhì),是一道基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

30、如圖,PA、PB分別切⊙O于A、B,連接PO與⊙O相交于C,連接AC、BC,求證:AC=BC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

17、如圖,P為⊙O外一點(diǎn),PA、PB分別切⊙O于A、B,CD切⊙O于點(diǎn)E,分別交PA、PB于點(diǎn)C、D,若PA=5,則△PCD的周長為
10

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•綿陽)如圖,PA、PB分別切⊙O于A、B,連接PO、AB相交于D,C是⊙O上一點(diǎn),∠C=60°.
(1)求∠APB的大。
(2)若PO=20cm,求△AOB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2009•河西區(qū)一模)如圖,已知PA,PB分別切⊙O于A、B,CD切⊙O于E,PO=13,AO=5,則△PCD周長為
24
24

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知PA、PB分別切⊙O于點(diǎn)A、B,∠P=90°,PA=3,那么⊙O的半徑長是
3
3

查看答案和解析>>

同步練習(xí)冊(cè)答案