【題目】一次函數(shù)與二次函數(shù)在同一平面直角坐標(biāo)系中的圖象可能是( ).
A.B.C.D.
【答案】C
【解析】
逐一分析四個選項,根據(jù)二次函數(shù)圖象的開口方向以及對稱軸與y軸的位置關(guān)系,即可得出a、b的正負性,由此即可得出一次函數(shù)圖象經(jīng)過的象限,即可得出結(jié)論.
A. ∵二次函數(shù)圖象開口向下,對稱軸在y軸左側(cè),
∴a<0,b<0,
∴一次函數(shù)圖象應(yīng)該過第二、三、四象限,故本選項錯誤;
B. ∵二次函數(shù)圖象開口向上,對稱軸在y軸右側(cè),
∴a>0,b<0,
∴一次函數(shù)圖象應(yīng)該過第一、三、四象限,故本選項錯誤;
C. ∵二次函數(shù)圖象開口向下,對稱軸在y軸左側(cè),
∴a<0,b<0,
∴一次函數(shù)圖象應(yīng)該過第二、三、四象限,故本選項正確;
D. ∵二次函數(shù)圖象開口向下,對稱軸在y軸左側(cè),
∴a<0,b<0,
∴一次函數(shù)圖象應(yīng)該過第二、三、四象限,故本選項錯誤.
故選C.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在△ABC中,∠C=90°,∠BAC的平分線AD交BC于點D.過點D作DE⊥AD交AB于點E,以AE為直徑作⊙O.
(1)求證:BC是⊙O的切線;
(2)若AC=6,BC=8,求BE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB是⊙O的直徑,PC切⊙O于點P,過A作直線AC⊥PC交⊙O于另一點D,連接PA、PB.
(1)求證:AP平分∠CAB;
(2)若P是直徑AB上方半圓弧上一動點,⊙O的半徑為2,則
①當(dāng)弦AP的長是_____時,以A,O,P,C為頂點的四邊形是正方形;
②當(dāng)的長度是______時,以A,D,O,P為頂點的四邊形是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,∠ABC=30°,△CDE是等邊三角形,點D在邊AB上.
(1)如圖1,當(dāng)點E在邊BC上時,求證DE=EB;
(2)如圖2,當(dāng)點E在△ABC內(nèi)部時,猜想ED和EB數(shù)量關(guān)系,并加以證明;
(3)如圖3,當(dāng)點E在△ABC外部時,EH⊥AB于點H,過點E作GE∥AB,交線段AC的延長線于點G,AG=5CG,BH=3.求CG的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形紙片ABCD中,AB=6,BC=10,點E在CD上,將△BCE沿BE折疊,點C恰落在邊AD上的點F處;點G在AF上,將△ABG沿BG折疊,點A恰落在線段BF上的點H處,有下列結(jié)論:
①∠EBG=45°; ②△DEF∽△ABG;
③S△ABG=S△FGH; ④AG+DF=FG.
其中正確的是_____.(填寫正確結(jié)論的序號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著交通道路的不斷完善,帶動了旅游業(yè)的發(fā)展,某市旅游景區(qū)有A、B、C、D、E等著名景點,該市旅游部門統(tǒng)計繪制出2017年“五一”長假期間旅游情況統(tǒng)計圖,根據(jù)以下信息解答下列問題:
(1)2017年“五一”期間,該市周邊景點共接待游客 萬人,扇形統(tǒng)計圖中A景點所對應(yīng)的圓心角的度數(shù)是 ,并補全條形統(tǒng)計圖.
(2)根據(jù)近幾年到該市旅游人數(shù)增長趨勢,預(yù)計2018年“五一”節(jié)將有80萬游客選擇該市旅游,請估計有多少萬人會選擇去E景點旅游?
(3)甲、乙兩個旅行團在A、B、D三個景點中,同時選擇去同一景點的概率是多少?請用畫樹狀圖或列表法加以說明,并列舉所用等可能的結(jié)果.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,O為原點,一次函數(shù)與反比例函數(shù)的圖象相交于A(2,1)B(-1,-2)兩點,與軸相交于點C.
(1)分別求反比例函數(shù)和一次函數(shù)的解析式(關(guān)系式);
(2)連接OA,求△AOC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某小區(qū)開展了“行車安全,方便居民”的活動,對地下車庫作了改進.如圖,這小區(qū)原地下車庫的入口處有斜坡AC長為13米,它的坡度為i=1:2.4,AB⊥BC,為了居民行車安全,現(xiàn)將斜坡的坡角改為13°,即∠ADC=13°(此時點B、C、D在同一直線上).
(1)求這個車庫的高度AB;
(2)求斜坡改進后的起點D與原起點C的距離(結(jié)果精確到0.1米).
(參考數(shù)據(jù):sin13°≈0.225,cos13°≈0.974,tan13°≈0.231,cot13°≈4.331)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com