(2013•燕山區(qū)一模)閱讀下列材料:
問題:如圖(1),已知正方形ABCD中,E、F分別是BC、CD邊上的點,且∠EAF=45°. 判斷線段BE、EF、FD之間的數(shù)量關系,并說明理由.

小明同學的想法是:已知條件比較分散,可以通過旋轉變換將分散的已知條件集中在一起,于是他將△DAF繞點A順時針旋轉90°,得到△BAH,然后通過證明三角形全等可得出結論.
請你參考小明同學的思路,解決下列問題:
(1)圖(1)中線段BE、EF、FD之間的數(shù)量關系是
EF=BE+DF
EF=BE+DF

(2)如圖(2),已知正方形ABCD邊長為5,E、F分別是BC、CD邊上的點,且∠EAF=45°,AG⊥EF于點G,則AG的長為
5
5
,△EFC的周長為
10
10
;
(3)如圖(3),已知△AEF中,∠EAF=45°,AG⊥EF于點G,且EG=2,GF=3,則△AEF的面積為
15
15
分析:(1)先根據(jù)旋轉的性質(zhì)得出△ADF≌△ABH,則∠DAF=∠BAH,AF=AH,再證明∠EAF=∠EAH=45°,利用SAS證明△FAE≌△HAE,根據(jù)全等三角形的性質(zhì)得出EF=HE=BE+HB,進而得出EF=BE+DF;
(2)由(1)知△FAE≌△HAE,根據(jù)全等三角形對應邊上的高相等得出AG=AB=5,再利用HL證明△AEG≌△ABE,得出EG=BE,同理得到GF=DF,則△EFC的周長為BC+CD=10;
(3)將△AEF置于圖(2)中,設AB=x,則CE=x-2,CF=x-3,在△CEF中,運用勾股定理得出FC2+EC2=EF2,列出關于x的方程,解方程求出x的值,即為AG的長,再根據(jù)三角形的面積公式即可求解.
解答:解:(1)EF=BE+DF.理由如下:
∵將△DAF繞點A順時針旋轉90°,得到△BAH,
∴△ADF≌△ABH,
∴∠DAF=∠BAH,AF=AH,
∴∠FAH=90°,
∴∠EAF=∠EAH=45°,
在△FAE和△HAE中,
 AF=AH  
∠FAE=∠HAE
AE=AE
,
∴△FAE≌△HAE(SAS),
∴EF=HE=BE+HB,
∴EF=BE+DF;

(2)∵△FAE≌△HAE,AG、AB分別是△FAE與△HAE的高,
∴AG=AB=5.
在△AEG與△ABE中,∠AGE=∠ABE=90°,
AE=AE
AG=AB

∴Rt△AEG≌Rt△ABE(HL),
∴EG=BE,
同理GF=DF,
∴△EFC的周長=EC+EF+FC=EC+EG+GF+FC=EC+BE+DF+FC=BC+CD=10;

(3)將△AEF置于圖(2)中.
∵EG=2,GF=3,
∴BE=2,DF=3,EF=5.
設AB=x,則CE=x-2,CF=x-3,
在△CEF中,∵∠C=90°,
∴FC2+EC2=EF2,
故(x-3)2+(x-2)2=52,
解得:x1=-1(舍去),x2=6,
∴AB=6,
∴AG=AB=6,
∴△AEF的面積=
1
2
EF•AG=
1
2
×5×6=15.
故答案為EF=BE+DF;5,10;15.
點評:本題主要考查旋轉的性質(zhì),正方形的性質(zhì),全等三角形的判定與性質(zhì),勾股定理,三角形的周長與面積等知識,同時考查了學生的閱讀理解能力與知識的遷移能力,綜合性較強,難度適中.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2013•燕山區(qū)一模)若實數(shù)a與-3互為相反數(shù),則a的值為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•燕山區(qū)一模)春節(jié)假期,全國收費公路7座以下小型客車實行免費通行.據(jù)交通運輸部統(tǒng)計,春節(jié)期間,全國收費公路(除四川、西藏、海南外)共免收通行費846 000 000元.把846 000 000用科學記數(shù)法表示應為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•燕山區(qū)一模)如圖,點P是⊙O的弦AB上任一點(與A,B均不重合),點C在⊙O上,PC⊥OP,已知AB=8,設BP=x,PC2=y,y與x之間的函數(shù)圖象大致是(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•燕山區(qū)一模)如圖,直線y=2x-1與反比例函數(shù)y=
kx
的圖象交于A,B兩點,與x軸交于C點,已知點A的坐標為(-1,m).
(1)求反比例函數(shù)的解析式;
(2)若P是x軸上一點,且滿足△PAC的面積是6,直接寫出點P的坐標.

查看答案和解析>>

同步練習冊答案