【題目】如圖,ABC中,AB=AC,D是BC的中點,AC的垂直平分線分別交AC、AD、AB于點E、O、F,則圖中全等三角形的對數(shù)是( .

A.1對 B.2對 C.3對 D.4對

【答案】D.

【解析】

試題分析:根據(jù)線段垂直平分線上的點到線段兩端點的距離相等可得OA=OC,然后判斷出AOE和COE全等,再根據(jù)等腰三角形三線合一的性質可得ADBC,從而得到ABC關于直線AD軸對稱,再根據(jù)全等三角形的定義寫出全等三角形即可得解.EF是AC的垂直平分線,OA=OC,又OE=OD,RtAOERtCOE,AB=AC,D是BC的中點,ADBC,∴△ABC關于直線AD軸對稱,∴△AOC≌△AOB,BOD≌△COD,ABD≌△ACD,綜上所述,全等三角形共有4對.

故選D.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC中,∠C=90°,AB=5cm,BC=3cm,若動點P從點C開始,按CABC的路徑運動,且速度為每秒1cm,設出發(fā)的時間為t秒.

(1)出發(fā)2秒后,求ABP的周長;

(2)問t滿足什么條件時,BCP為直角三角形;

(3)另有一點Q,從點C開始,按CBAC的路徑運動,且速度為每秒2cm,若P、Q兩點同時出發(fā),當P、Q中有一點到達終點時,另一點也停止運動.當t為何值時,直線PQABC的周長分成相等的兩部分.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,BE是∠ABD的平分線,CF是∠ACD的平分線,BECF交于G,若∠BDC=140°,BGC=110°,則∠A__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】商店只有雪碧、可樂、果汁、奶汁四種飲料,每種飲料數(shù)量充足,某同學去該店購買飲料,每種飲料被選中的可能性相同.

1)若他去買一瓶飲料,則他買到奶汁的概率是 ;

2)若他兩次去買飲料,每次買一瓶,且兩次所買飲料品種不同,請用樹狀圖或列表法求出他恰好買到雪碧和奶汁的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】3a-b)(3a+b-2a-b)(2a+b

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】因式分解:x2﹣x=______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】3a-b)(3a+b-a+b2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)閱讀理解:

如圖,在ABC中,若AB=10,AC=6,求BC邊上的中線AD的取值范圍.

解決此問題可以用如下方法:延長AD到點E使DE=AD,再連接BE(或將ACD繞著點D逆時針旋轉180°得到EBD),把AB、AC,2AD集中在ABE中,利用三角形三邊的關系即可判斷.中線AD的取值范圍是 ;

(2)問題解決:

如圖,在ABC中,D是BC邊上的中點,DEDF于點D,DE交AB于點E,DF交AC于點F,連接EF,求證:BE+CFEF;

(3)問題拓展:

如圖,在四邊形ABCD中,B+D=180°,CB=CD,BCD=140°,以C為頂點作一個70°角,角的兩邊分別交AB,AD于E、F兩點,連接EF,探索線段BE,DF,EF之間的數(shù)量關系,并加以證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知等腰三角形的兩邊長分別為5cm和8cm,則等腰三角形的周長為

查看答案和解析>>

同步練習冊答案