【題目】如圖,某中學(xué)準(zhǔn)備圍建一個(gè)矩形苗圃,其中一邊靠墻,另外三邊用長為米的籬笆圍成,若墻長為米,設(shè)這個(gè)苗圃垂直于墻的一邊長為米.
若苗圃園的面積為平方米,求的值;
若平行于墻的一邊長不小于米,這個(gè)苗圃園的面積有最大值和最小值嗎?如果有,求出最大值和最小值,如果沒有,請說明理由.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠BAD=∠CAE=90°,AB=AD,AE=AC,F是CB延長線上一點(diǎn),AF⊥CF,垂足為F.下列結(jié)論:①∠ACF=45°;②四邊形ABCD的面積等于AC2;③CE=2AF;④S△BCD=S△ABF+S△ADE;其中正確的是( 。
A.①②B.②③C.①②③D.①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,點(diǎn)E、F分別在BC、AB邊上,且∠BEF+∠BFE﹣∠B=∠A.
(1)如圖1,求證:AB=AC;
(2)如圖2,延長EF交CA的延長線于D,點(diǎn)G是線段CE上一點(diǎn),且∠CDE=∠BDG=90°,若∠BFE=2∠DBA,求∠DGB的度數(shù).
(3)如圖3,在(2)的條件下,EG=AC,CD=8,求△BDG的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為1,AC,BD是對角線.將△DCB繞著點(diǎn)D順時(shí)針旋轉(zhuǎn)45°得到△DGH,HG交AB于點(diǎn)E,連接DE交AC于點(diǎn)F,連接FG.則下列結(jié)論:
①四邊形AEGF是菱形②△AED≌△GED③∠DFG=112.5°④BC+FG=1.5其中正確的結(jié)論是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在ABC中,AB=AC=5,BC=6,點(diǎn)M在△ABC內(nèi),AM平分∠BAC.點(diǎn)E與點(diǎn)M在AC所在直線的兩側(cè),AE⊥AB,AE=BC,點(diǎn)N在AC邊上,CN=AM,連接ME、BN;
(1)根據(jù)題意,補(bǔ)全圖形;
(2)ME與BN有何數(shù)量關(guān)系,判斷并說明理由;
(3)點(diǎn)M在何處時(shí)BM+BN取得最小值?請確定此時(shí)點(diǎn)M的位置,并求出此時(shí)BM+BN的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】春季是傳染病多發(fā)的季節(jié),積極預(yù)防傳染病是學(xué)校高度重視的一項(xiàng)工作,為此,某校對學(xué)生宿舍采取噴灑藥物進(jìn)行消毒.在對某宿舍進(jìn)行消毒的過程中,先經(jīng)過的集中藥物噴灑,再封閉宿舍,然后打開門窗進(jìn)行通風(fēng),室內(nèi)每立方米空氣中含藥量與藥物在空氣中的持續(xù)時(shí)間之間的函數(shù)關(guān)系,在打開門窗通風(fēng)前分別滿足兩個(gè)一次函數(shù),在通風(fēng)后又成反比例,如圖所示.下面四個(gè)選項(xiàng)中錯(cuò)誤的是( )
A. 經(jīng)過集中噴灑藥物,室內(nèi)空氣中的含藥量最高達(dá)到
B. 室內(nèi)空氣中的含藥量不低于的持續(xù)時(shí)間達(dá)到了
C. 當(dāng)室內(nèi)空氣中的含藥量不低于且持續(xù)時(shí)間不低于35分鐘,才能有效殺滅某種傳染病毒.此次消毒完全有效
D. 當(dāng)室內(nèi)空氣中的含藥量低于時(shí),對人體才是安全的,所以從室內(nèi)空氣中的含藥量達(dá)到開始,需經(jīng)過后,學(xué)生才能進(jìn)入室內(nèi)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△AOB,△COD是等腰直角三角形,點(diǎn)D在AB上.
(1)求證:△ACO≌△BDO;
(2)若∠BOD=30°,求∠ACD度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中有一直角三角形AOB,O為坐標(biāo)原點(diǎn),OA=1,tan∠BAO=3,將此三角形繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°,得到△DOC,拋物線y=ax2+bx+c經(jīng)過點(diǎn)A、B、C.
(1)求拋物線的解析式;
(2)若點(diǎn)P是第二象限內(nèi)拋物線上的動點(diǎn),其橫坐標(biāo)為t,設(shè)拋物線對稱軸l與x軸交于一點(diǎn)E,連接PE,交CD于F,求以C、E、F為頂點(diǎn)三角形與△COD相似時(shí)點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:△AC 內(nèi)接于⊙O,D 是弧BC上一點(diǎn),OD⊥BC,垂足為 H.
(1)如圖 1,當(dāng)圓心 O 在 AB 邊上時(shí),求證:AC=2OH;
(2)如圖 2,當(dāng)圓心 O 在△ABC 外部時(shí),連接 AD、CD,AD 與 BC 交于點(diǎn) P.求證:∠ACD=∠APB.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com