如圖所示,∠ABC=50°,AD垂直平分線段BC交BC于D,∠ABD的平分線BE交AD于E,連接EC,求∠AEC的度數(shù).

解:∵AD垂直且平分BC,
∴BE=EC,
∴∠DBE=∠DCE,
又∵∠ABC=50°,BE為∠ABC的平分線,
∴∠EBC=∠C=
∴∠AEC=∠C+∠EDC=90°+25°=115°,
∴∠AEC=115°.
分析:先由已知條件AD垂直且平分BC,得出BE=EC,由題意可得∠C=∠EBC=×50°=25度,所以∠AEC=90°+25°=115°.
點(diǎn)評(píng):此題考查線段的垂直平分線.線段的垂直平分線上的點(diǎn)到線段的兩個(gè)端點(diǎn)的距離相等.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

25、如圖所示,△ABC和△ADE都是等邊三角形,且B、A、E在同一直線上,連接BD交AC于M,連接CE交AD于N,連接MN.
求證:(1)BD=CE;(2)BM=CN;(3)MN∥BE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

19、如圖所示,△ABC沿著直尺PQ平移到△A′B′C′,則:
(1)對(duì)應(yīng)點(diǎn):
點(diǎn)A與點(diǎn)A′,點(diǎn)B與點(diǎn)B′,點(diǎn)C與點(diǎn)C′是對(duì)應(yīng)點(diǎn).
;
(2)對(duì)應(yīng)線段:
AB與A′B′,BC與B′C′,CA與C′A′是對(duì)應(yīng)線段

(3)對(duì)應(yīng)角:
∠A與∠A′,∠B與∠B′,∠C與∠C′是對(duì)應(yīng)角.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

34、已知如圖所示,△ABC與△A′B′C′關(guān)于原點(diǎn)O對(duì)稱(chēng),點(diǎn)A(-2,3),B(-4,2),C′(1,-1),則A′點(diǎn)的坐標(biāo)為
(2,-3)
,B′點(diǎn)的坐標(biāo)為
(4,-2)
,C點(diǎn)的坐標(biāo)為
(-1,1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,△ABC的周長(zhǎng)為12,它的內(nèi)切圓⊙O的半徑為1,若向△ABC的內(nèi)部隨機(jī)地拋擲黃豆,則黃豆落入圓內(nèi)的概率是
π
6
π
6

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知如圖所示,△ABC和△ABC外的一點(diǎn)A′,把△ABC平移,使A與A′重合.

查看答案和解析>>

同步練習(xí)冊(cè)答案