(2008•長沙)如圖,六邊形ABCDEF內接于半徑為r(常數(shù))的⊙O,其中AD為直徑,且AB=CD=DE=FA.
(1)當∠BAD=75°時,求的長;
(2)求證:BC∥AD∥FE;
(3)設AB=x,求六邊形ABCDEF的周長L關于x的函數(shù)關系式,并指出x為何值時,L取得最大值.

【答案】分析:(1)本題要靠輔助線的幫助.連接OB、OC,證明∠COD=∠AOB即可.
(2)連接BD,由(1)得BC∥AD,EF∥AD推出BC∥AD∥FE.
(3)過點B作BM⊥AD于M,由(2)得出四邊形ABCD為等腰梯形,證明△BAM∽△DAB.得出AM、BC、EF的關系然后可求出L的最大值.
解答:(1)解:連接OB、OC,由∠BAD=75°,OA=OB知∠AOB=30°,
∵AB=CD,∴∠COD=∠AOB=30°,
∴∠BOC=120°,(2分)
的長為.(3分)

(2)證明:連接BD,∵AB=CD,
∴弧AB=弧CD,
∴∠ADB=∠CBD,∴BC∥AD,(5分)
同理EF∥AD,從而BC∥AD∥FE.(6分)

(3)解:過點B作BM⊥AD于M,由(2)知四邊形ABCD為等腰梯形,從而BC=AD-2AM=2r-2AM.(7分)
∵AD為直徑,∴∠ABD=90°,易得△BAM∽△DAB,∴AM:AB=AB:AD,
∴AM==,∴BC=2r-,同理EF=2r-,(8分)
∴L=4x+2(2r-)=-x2+4x+4r=-(x-r)2+6r,其中0<x<,(9分)
∴當x=r時,L取得最大值6r.(10分)
點評:本題考查的是相似三角形的性質,弧長的計算以及二次函數(shù)的綜合運用,難度較大.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2008年全國中考數(shù)學試題匯編《三角形》(04)(解析版) 題型:選擇題

(2008•長沙)如圖,P為⊙O外一點,PA切⊙O于點A,且OP=5,PA=4,則sin∠APO等于( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源:2008年全國中考數(shù)學試題匯編《圖形認識初步》(01)(解析版) 題型:選擇題

(2008•長沙)如圖是每個面上都有一個漢字的正方體的一種展開圖,那么在正方體的表面,與“迎”相對的面上的漢字是( )

A.文
B.明
C.奧
D.運

查看答案和解析>>

科目:初中數(shù)學 來源:2009年北京市石景山區(qū)中考數(shù)學二模試卷(解析版) 題型:填空題

(2008•長沙)如圖,P為菱形ABCD的對角線上一點,PE⊥AB于點E,PF⊥AD于點F,PF=3cm,則P點到AB的距離是    cm.

查看答案和解析>>

科目:初中數(shù)學 來源:2008年湖南省長沙市中考數(shù)學試卷(解析版) 題型:解答題

(2008•長沙)如圖,六邊形ABCDEF內接于半徑為r(常數(shù))的⊙O,其中AD為直徑,且AB=CD=DE=FA.
(1)當∠BAD=75°時,求的長;
(2)求證:BC∥AD∥FE;
(3)設AB=x,求六邊形ABCDEF的周長L關于x的函數(shù)關系式,并指出x為何值時,L取得最大值.

查看答案和解析>>

科目:初中數(shù)學 來源:2008年湖南省長沙市中考數(shù)學試卷(解析版) 題型:填空題

(2008•長沙)如圖,P為菱形ABCD的對角線上一點,PE⊥AB于點E,PF⊥AD于點F,PF=3cm,則P點到AB的距離是    cm.

查看答案和解析>>

同步練習冊答案