【題目】如圖,一個正比例函數(shù)與一個一次函數(shù)的圖象交于點A(3,4),其中一次函數(shù)與y軸交于B點,且OA=OB.

(1)求這兩個函數(shù)的表達(dá)式;

(2)求AOB的面積S.

【答案】(1)y=ax+b,y=3x﹣5;(2

【解析】

試題分析:(1)把A點坐標(biāo)代入可先求得直線OA的解析式,可求得OA的長,則可求得B點坐標(biāo),可求得直線AB的解析式;

(2)由A點坐標(biāo)可求得A到y(tǒng)軸的距離,根據(jù)三角形面積公式可求得S.

解:

(1)設(shè)直線OA的解析式為y=kx,

把A(3,4)代入得4=3k,解得k=,

所以直線OA的解析式為y=x;

A點坐標(biāo)為(3,4),

OA==5,

OB=OA=5,

B點坐標(biāo)為(0,﹣5),

設(shè)直線AB的解析式為y=ax+b,

把A(3,4)、B(0,﹣5)代入得,解得

直線AB的解析式為y=3x﹣5;

(2)A(3,4),

A點到y(tǒng)軸的距離為3,且OB=5,

S=×5×3=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】電子跳蚤游戲盤是如圖所示的ABC,AB6,AC7,BC8.如果跳蚤開始時在BC邊的P0處,BP02.跳蚤第一步從P0跳到AC邊的P1(第1次落點)處,且CP1CP0;第二步從P1跳到AB邊的P2(第2次落點)處,且AP2AP1;第三步從P2跳到BC邊的P3(第3次落點)處,且BP3BP2……;跳蚤按上述規(guī)則一直跳下去,第n次落點為Pn(n為正整數(shù)),則點P2013與P2016之間的距離為(

A.1 B.2 C.3 D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,A、B、C三點的坐標(biāo)分別為(﹣6,7)、(﹣3,0)、(0,3).

(1)畫出ABC,并求ABC的面積;

(2)在ABC中,點C經(jīng)過平移后的對應(yīng)點為C′(5,4),將ABC作同樣的平移得到A′B′C′, 畫出平移后的A′B′C′,并寫出點A′,B′的坐標(biāo);

(3)已知點P(﹣3,m)為ABC內(nèi)一點,將點P向右平移4個單位后,再向下平移6個單位得到點Q(n,﹣3),則m=    ,n=    

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知一次函數(shù)y=2x+1的圖象經(jīng)過P1(x1 , y1)、P2(x2 , y2)兩點,若x1<x2 , 則y1y2 . (填“>”“<”或“=”)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】化簡后再求值:x+23y2﹣2x﹣42x﹣y2),其中x=2,y=﹣1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列計算中,正確的是(
A.(2a)3=2a3
B.a3+a2=a5
C.(a23=a6
D.a8÷a4=a2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠C=90°, AD∠BAC的平分線,OAB上一點, OA為半徑的⊙O經(jīng)過點D

1)求證:BC⊙O切線;

2)若BD=5DC=3,求AC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點A的坐標(biāo)為(0,3),OAB沿x軸向右平移后得到O′A′B′,點A的對應(yīng)點在直線y=x上一點,則點B與其對應(yīng)點B′間的距離為( )

A. B.3 C.4 D.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知ABC的三個頂點的坐標(biāo)分別為A(﹣2,3),B(﹣6,0),C(﹣1,0).

(1)請直接寫出點B關(guān)于點A對稱的點的坐標(biāo);

(2)將ABC繞坐標(biāo)原點O逆時針旋轉(zhuǎn)90°,畫出圖形,直接寫出點B的對應(yīng)點的坐標(biāo);

(3)請直接寫出:以A、B、C為頂點的平行四邊形的第四個頂點D的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案