【題目】△ABC中,∠A,∠B,∠C的對邊分別記為,,,由下列條件不能判定△ABC為直角三角形的是( ).
A.∠A+∠B=∠C
B.∠A∶∠B∶∠C =1∶2∶3
C.
D.∶∶=3∶4∶6
【答案】D.
【解析】
試題分析:A選項能判定△ABC為直角三角形,因為三角形的內(nèi)角和是180度,所以∠A+∠B+∠C=180°,當∠A+∠B=∠C 時 ,此式轉(zhuǎn)換成∠C+∠C=180°,2∠C=180°,∠C=90°,所以可判定△ABC為直角三角形,B選項能判定△ABC為直角三角形,因為三角形的內(nèi)角和是180度,所以∠A+∠B+∠C=180°,當∠A∶∠B∶∠C =1∶2∶3時,最大角∠C=180°×=90°,所以可判定△ABC為直角三角形;C選項能判定△ABC為直角三角形,根據(jù)勾股定理的逆定理,如果三角形的兩條邊的平方和等于第三邊的平方,那么這個三角形就是直角三角形,當 時,移項得:,所以也可判定△ABC為直角三角形;D選項不能判定△ABC為直角三角形,因為當∶∶=3∶4∶6時,設這三邊為3x,4x,6x,因為(3x)2+(4x)2≠(6x)2,根據(jù)勾股定理的逆定理,△ABC不是直角三角形;綜上所述,本題選D.
科目:初中數(shù)學 來源: 題型:
【題目】如圖是一個被抹去x軸、y軸及原點O的網(wǎng)格圖,網(wǎng)格中每個小正方形的邊長均為1個單位長度,三角形ABC的各頂點都在網(wǎng)格的格點上,若記點A的坐標為(﹣1,3),點C的坐標為(1,﹣1).
(1)請在圖中找出x軸、y軸及原點O的位置;
(2)把△ABC向下平移2個單位長度,再向右平移3個單位長度,請你畫出平移后的△A1B1C1,若△ABC內(nèi)部一點P的坐標為(a,b),則點P的對應點P1的坐標是 ;
(3)試求出△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,是將菱形ABCD以點O為中心按順時針方向分別旋轉(zhuǎn)90°,180°,270°后形成的圖形。若,AB=2,則圖中陰影部分的面積為( )
A. 12-4 B. 5 C. 12-4 D. 6
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,D是邊AC上一點,連BD,給出下列條件:①∠ABD=∠ACB;②AB2=ADAC;③ADBC=ABBD;④ABBC=ACBD.其中單獨能夠判定△ABC∽△ADB的個數(shù)是( )
A.①②
B.①②③
C.①②④
D.①②③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,Rt⊿ABC中,∠C = 90,以斜邊AB為邊向外作正方形ABDE,且正方形對角線交于點O,連接OC,已知AC=6,OC=,則直角邊BC的長為___________
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知點A(0,2),△AOB為等邊三角形,P是x軸上一個動點(不與原O重合),以線段AP為一邊在其右側作等邊三角形△APQ.
(1)求點B的坐標;
(2)在點P的運動過程中,∠ABQ的大小是否發(fā)生改變?如不改變,求出其大;如改變,請說明理由.
(3)連接OQ,當OQ∥AB時,求P點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀填空,并完成問題:“絕對值”一節(jié)學習后,數(shù)學老師對同學們的學習進行了拓展.數(shù)學老師向同學們提出了這樣的問題:“在數(shù)軸上,一個數(shù)的絕對值就是表示這個數(shù)的點到原點的距離.那么,如果用P(a)表示數(shù)軸上的點P表示有理數(shù)a,Q(b)表示數(shù)軸上的點Q表示有理數(shù)b,那么點P與點Q的距離是多少?”
(1)聰明的小明經(jīng)過思考回答說:這個問題應該有兩種情況.一種是點P和點Q在原點的兩側,此時點P與點Q的距離是a和b的絕對值的和,即∣a∣+∣b∣.例如:點A(-3)與點B(5)的距離為∣-3∣+∣-5∣= ;
另一種是點P和點Q在原點的同側,此時點P與點Q的距離的a和b中,較大的絕對值減去較小的絕對值,即∣a∣-∣b∣或∣b∣-∣a∣.例如:點A(-3)與點B(-5)的距離為∣-5∣-∣-3∣= ;
你認為小明的說法有道理嗎?如果沒有道理,請你指出錯誤之處;如果有道理,請你模仿求出數(shù)軸上點M()與N()之間和點C(-2)與D(-7)之間的距離.
(2)小穎在聽了小明的方法后,提出了不同的方法,小穎說:我們可以不考慮點P和點Q所在的位置,無論點P與點Q的位置如何,它們之間的距離就是數(shù)a與b的差的絕對值,即∣a-b∣.例如:點A(-3)與點B(5)的距離就是∣-3-5∣= ;點A(-3)與點B(-5)的距離就是∣(-3)-(-5)∣= ;你認為小穎的說法有道理嗎?如果沒有道理,請你指出錯誤之處;如果有道理,請你模仿求出數(shù)軸上點M()與N()之間和點C(-1.5)與D(-3.5)之間的距離.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com