精英家教網 > 初中數學 > 題目詳情

【題目】如圖所示,在菱形ABCD中,∠A=60°,AB=2,E,F兩點分別從A,B兩點同時出發(fā),以相同的速度分別向終點B,C移動,連接EF,在移動的過程中,EF的最小值為(  )

A. 1 B. C. D.

【答案】D

【解析】

連接DB,作DHABH,如圖,∵四邊形ABCD為菱形,∴AD=AB=BC=CD,而∠A=60°,∴△ABD和△BCD都是等邊三角形,∴∠ADB=∠DBC=60°,AD=BD,在Rt△ABH中,AH=1,AD=2,∴DH=,在△ADE和△BDF中,,∴△ADE≌△BDF,∴∠2=∠1,DE=DF,∴∠1+∠BDE=∠2+∠BDE=∠ADB=60°,∴△DEF為等邊三角形,∴EF=DE,而當E點運動到H點時,DE的值最小,其最小值為,∴EF的最小值為.故選D.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】某高速鐵路工程指揮部,要對某路段工程進行招標,接到了甲、乙兩個工程隊的投標書.從投標書中得知:甲隊單獨完成這項工程所需天數是乙隊單獨完成這項工程所需天數的:若由甲隊先做20天,剩下的工程再由甲、乙兩隊合作60天完成.

(1)求甲、乙兩隊單獨完成這項工程各需多少天?

(2)已知甲隊每天的施工費用為8.6萬元,乙隊每天的施工費用為5.4萬元,工程預算的施工費用為1000萬元.若在甲、乙工程隊工作效率不變的情況下使施工時間最短,問擬安排預算的施工費用是否夠用?若不夠用,需追加預算多少萬元?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知關于x的方程x2﹣2(k﹣1)x+k2=0有兩個實數根x1 , x2
(1)求k的取值范圍;
(2)若|x1+x2|=x1x2﹣1,求k的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知關于x的一元二次方程x2﹣2x+m﹣1=0有兩個實數根x1 , x2
(1)求m的取值范圍;
(2)當x12+x22=6x1x2時,求m的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】一艘漁船從港口A沿北偏東60°方向航行至C處時突然發(fā)生故障,在C處等待救援.有一救援艇位于港口A正東方向20(﹣1)海里的B處,接到求救信號后,立即沿北偏東45°方向以30海里/小時的速度前往C處救援.則救援艇到達C處所用的時間為( 。

A. 小時 B. 小時 C. 小時 D. 小時

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,∠BAD的平分線與BC的延長線交于點E,與DC交于點F.

(1)求證:CD=BE;

(2)若AB=4,點F為DC的中點,DG⊥AE,垂足為G,且DG=1,求AE的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某電器商場銷售甲、乙兩種品牌空調,已知每臺乙種品牌空調的進價比每臺甲種品牌空調的進價高20%,用7200元購進的乙種品牌空調數量比用3000元購進的甲種品牌空調數量多2 臺.
(1)求甲、乙兩種品牌空調的進貨價;
(2)該商場擬用不超過16000 元購進甲、乙兩種品牌空調共10臺進行銷售,其中甲種品牌空調的售價為2500元/臺,乙種品牌空調的售價為3500元/臺.請你幫該商場設計一種進貨方案,使得在售完這10 臺空調后獲利最大,并求出最大利潤.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,AC=BC,D為△ABC內一點,∠CAD=∠CBD=15°,E為AD延長線上的一點,且CE=AC.

(1)求∠CDE的度數;

(2)若點M在DE上,且DC=DM,求證:ME=BD.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】甲、乙兩名同學相距20m,他們同時出發(fā),同向而行,甲在乙后,圖中L1、L2分別表示他們二人的路程與時間的關系,看圖回答下列問題:

(1)20s時甲跑了多少米?乙跑了多少米?

(2)甲用幾秒鐘可追上乙?

查看答案和解析>>

同步練習冊答案