一等腰梯形兩組對邊中點連線段的平方和為8,則這個等腰梯形的對角線長為   
【答案】分析:首先由等腰梯形的性質(zhì),求得MN⊥BC,EF=(AD+BC),然后過點D作DK∥AC交BC的延長線于K,過點D作DH⊥BC于H,即可得四邊形ACKD是平行四邊形,四邊形MNHD是矩形,則可得△BDK是等腰三角形,由三線合一的知識,可得BH=EF,在Rt△BDH中由勾股定理即可求得答案.
解答:已知:如圖,AD∥BC,AB=CD,E,N,F(xiàn),M分別是邊AB,BC,CD,DA的中點,且EF2+MN2=8.
求:這個等腰梯形的對角長.
解:過點D作DK∥AC交BC的延長線于K,過點D作DH⊥BC于H,
∵AD∥BC,AB=CD,E,N,F(xiàn),M分別是邊AB,BC,CD,DA的中點,
∴EF=(AD+BC),MN⊥BC,AC=BD,
∴四邊形ACKD是平行四邊形,
∴DK=AC=BD,CK=AD,
∴BH=KH=BK=(BC+CK)=(BC+AD),
∴BH=EF,
∵四邊形MNHD是矩形,
∴DH=MN,
∴在Rt△BDH中,BD2=BH2+DH2=EF2+MN2=8,
∴BD=2
∴這個等腰梯形的對角線長為2
故答案為:2
點評:此題考查了等腰梯形的性質(zhì),平行四邊形與矩形的性質(zhì)與判定以及等腰三角形,直角三角形的性質(zhì)等知識.此題綜合性很強,而且需要同學(xué)們將文字語言翻譯成數(shù)學(xué)語言,難度較大,解題的關(guān)鍵是注意數(shù)形結(jié)合思想的應(yīng)用,注意輔助線的作法.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:

6、下列命題中,是真命題的為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

7、下列說法中,正確的是( �。�

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

7、下列命題中,正確的命題是( �。�

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

下列命題中,真命題是( �。�

查看答案和解析>>

同步練習冊答案
闂傚倸鍊搁崐鎼佸磹閻戣姤鍤勯柤鍝ユ暩娴犳艾鈹戞幊閸婃鎱ㄧ€靛憡宕叉慨妞诲亾闁绘侗鍠涚粻娑樷槈濞嗘劖顏熼梻浣芥硶閸o箓骞忛敓锟� 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬崘顕ч埞鎴︽偐閸欏鎮欑紓浣哄閸ㄥ爼寮婚妸鈺傚亞闁稿本绋戦锟�