已知:如圖,△ABC中,AC=BC,CD⊥AC交AB于點D,點O在BC上,⊙O經(jīng)過B、D兩點,且與BC交于點E.
(1)試判斷CD與⊙O的位置關系,并加以證明;
(2)若AC=16,,求⊙O的半徑.

【答案】分析:(1)連接OD,由等腰三角形的性質得出∠ODB=∠A,由平行線的判定定理得出OD∥AC,再根據(jù)CD⊥AC,可得出AC⊥OD,進而可得出結論;
(2)由=,設CE=x,CD=2x,由AC=16可用x表示出BE及OD的值,再在△ODE中利用勾股定理即可求出x的值.
解答:(1)CD為⊙O的切線(1分)
證明:連接OD,
∵OB=OD,
∴∠B=∠ODB,
∵AC=BC,
∴∠B=∠A,
∴∠ODB=∠A,
∴OD∥AC,
∴∠ODC=∠DCA,
∵CD⊥AC,
∴∠DCA=90°,
∴∠ODC=90°,
∴AC⊥OD,(2分)
∴CD是⊙O的切線;(3分)

(2)∵=,
∴設CE=x,CD=2x,
∵AC=16,
∴BE=BC-CE=16-x,
∵BE為⊙O的直徑,
∴OD=OE=8-x,
∴OC=8+x,(4分)
∵OC2-OD2=CD2
∴(8+x)2-(8-x)2=4x2,
∴x=4,x=0,(舍去)
∴OD=6.(5分)
點評:本題考查的是切線的判定與性質、勾股定理、圓周角定理及等腰三角形的性質,根據(jù)題意作出輔助線,構造出直角三角形是解答此題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

17、已知,如圖,△ABC中,∠BAC=90°,AD⊥BC于點D,BE平分∠ABC,交AD于點M,AN平分∠DAC,交BC于點N.
求證:四邊形AMNE是菱形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,∠ABC、∠ACB 的平分線相交于點F,過F作DE∥BC于D,交AC 于E,且AB=6,AC=5,求三角形ADE的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,△ABC是等邊三角形,點D在AB上,點E在AC的延長線上,且BD=CE,DE交BC于F,求證:BF=CF+CE.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,△ABC中,AB=AC=10,BC=16,點D在BC上,DA⊥CA于A.
求:BD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,△ABC中,AD⊥BC,BD=DE,點E在AC的垂直平分線上.
(1)請問:AB、BD、DC有何數(shù)量關系?并說明理由.
(2)如果∠B=60°,請問BD和DC有何數(shù)量關系?并說明理由.

查看答案和解析>>

同步練習冊答案