【題目】在平面直角坐標(biāo)系中,正方形ABCD的頂點坐標(biāo)分別為 A(1,1),B(1,-1),C(-1,-1),D(-1,1),y軸上有一點 P(0,2).作點P關(guān)于點A的對稱點P1,作點P1關(guān)于點B的對稱點P2,作點P2關(guān)于點C的對稱軸P3,作點P3關(guān)于點D的對稱點P4,作點P4關(guān)于點A的對稱點P5,作點P5關(guān)于點B的對稱點P6,…,按此操作下去,則點P2016的坐標(biāo)為(

A. (0,2) B. (2,0) C. (0,-2) D. (-2,0)

【答案】A

【解析】試題分析:根據(jù)題意可得:(2,0),(0,-2)(-2,0),(0,2),(2,0)……,以(2,0),(0,-2),(-2,0)(0,2)這四個點坐標(biāo)進行循環(huán),則2016÷4=504,則的坐標(biāo)為(0,2).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列四個多邊形:等邊三角形;正方形;正五邊形;正六邊形.其中,既是軸對稱圖形又是中心對稱圖形的是( )

A. ①②B. ②③C. ②④D. ①④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,B,C兩點把線段AD分成2:5:3三部分,M為AD的中點,BM=6cm,求CM和AD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】施工隊要修建一個橫斷面為拋物線的公路隧道,其高度為6米,寬度OM為12米,現(xiàn)在O點為原點,OM所在直線為x軸建立直角坐標(biāo)系(如圖所示).

(1)直接寫出點M及拋物線頂點P的坐標(biāo);

(2)求出這條拋物線的函數(shù)解析式;

(3)施工隊計劃在隧道門口搭建一個矩形“腳手架”ABCD,使A、D點在拋物線上,B、C點在地面OM上.為了籌備材料,需求出“腳手架”三根木桿AB、AD、DC的長度之和的最大值是多少?請你幫施工隊計算一下.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,反比例函數(shù)y=的圖象與一次函數(shù)y=axb的圖象交于C(4,3),E(3,4)兩點.且一次函數(shù)圖象交y軸于點A.

(1)求反比例函數(shù)與一次函數(shù)的解析式;

(2)求COE的面積;

(3)點M在x軸上移動,是否存在點M使OCM為等腰三角形?若存在,請你直接寫出M點的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列判斷正確的是( 。

A. 兩邊和一角對應(yīng)相等的兩個三角形全等 B. 一邊及一銳角相等的兩個直角三角形全等

C. 頂角和底邊分別相等的兩個等腰三角形全等 D. 三個內(nèi)角對應(yīng)相等的兩個三角形全等

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB和DE是直立在地面上的兩根立柱.AB=4m,某一時刻AB在陽光下的投影BC=3m.

(1)請你在圖中畫出此時DE在陽光下的投影.

(2)在測量AB的投影時,同時測量出DE在陽光下的投影長為8m,請你計算DE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明、小剛和小紅打算各自隨機選擇本周日的上午或下午去興化李中水上森林游玩.

1)小明和小剛都在本周日上午去游玩的概率為 ;

2)求他們?nèi)嗽谕粋半天去游玩的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】彈簧掛上物體后會伸長,已知一彈簧的長度(cm)與所掛物體的質(zhì)量(kg)之間的關(guān)系如下表:

物體的質(zhì)量(kg

0

1

2

3

4

5

彈簧的長度(cm

12

12.5

13

13.5

14

14.5

1)上表反映了哪些變量之間的關(guān)系?哪個是自變量?哪個是因變量?

2)當(dāng)物體的質(zhì)量為3kg時,彈簧的長度怎樣變化?

3)當(dāng)物體的質(zhì)量逐漸增加時,彈簧的長度怎樣變化?

4)如果物體的質(zhì)量為xkg,彈簧的長度為ycm,根據(jù)上表寫出yx的關(guān)系式;

5)當(dāng)物體的質(zhì)量為2.5kg時,根據(jù)(4)的關(guān)系式,求彈簧的長度.

查看答案和解析>>

同步練習(xí)冊答案