如圖,在平面直角坐標系中,已知點A、B、C的坐標分別為(-1,0),(5,0),(0,2).
(1)求過A、B、C三點的拋物線解析式;
(2)若點P從A點出發(fā),沿x軸正方向以每秒1個單位長度的速度向B點移動,連接PC并延長到點E,使CE=PC,將線段PE繞點P順時針旋轉90°得到線段PF,連接FB.若點P運動的時間為t秒,(0≤t≤6)設△PBF的面積為S;
①求S與t的函數(shù)關系式;
②當t是多少時,△PBF的面積最大,最大面積是多少?
(3)點P在移動的過程中,△PBF能否成為直角三角形?若能,直接寫出點F的坐標;若不能,請說明理由.

【答案】分析:(1)因為拋物線過A、B、C三點,所以此三點的坐標使拋物線的解析式成立.
(2)①此題要分作兩種情況進行討論:
一、當P點位于原點左側,線段OA上;此時0≤t<1,可用t表示出OP、BP的長,欲求△BPF的面積,關鍵要求出BP邊上的高,可過F作FD⊥x軸于D;由于∠CPF=90°,易證得△OPC∽△DFP,根據(jù)已知條件可知PF=PE=2PC,即兩個相似三角形的相似比為2,那么DF=2OP,由此可得到DF的長,以BP為底,DF為高,即可求得△BPF的面積表達式,也就得到了關于S、t的函數(shù)關系式;
二、當P點位于原點右側,線段BP上;此時1<t<6,可仿照一的方法進行求解;
②根據(jù)①得到的S、t的函數(shù)關系式,及相應的自變量的取值范圍,即可根據(jù)函數(shù)的性質求得S的最大值及對應的t值,然后進行比較即可得到結果.
(3)當P位于線段OA上時,顯然△PFB不可能是直角三角形;由于∠BPF<∠CPF=90°,所以P不可能是直角頂點,可分兩種情況進行討論:
①F為直角頂點,過F作FD⊥x軸于D,由(2)可知BP=6-t,DP=2OC=4,在Rt△OCP中,OP=t-1,由勾股定理易求得CP=t2-2t+5,那么PF2=(2CP)2=4(t2-2t+5);在Rt△PFB中,F(xiàn)D⊥PB,由射影定理可求得PB=PF2÷PD=t2-2t+5,而PB的另一個表達式為:PB=6-t,聯(lián)立兩式可得t2-2t+5=6-t,即t=;
②B為直角頂點,那么此時的情況與(2)題類似,△PFB∽△CPO,且相似比為2,那么BP=2OC=4,即OP=OB-BP=1,此時t=2.
解答:解:(1)(法一)設拋物線的解析式為y=ax2+bx+c(a≠0),把A(-1,0),B(5,0),C(0,2)三點代入解析式得:
解得;
;(3分)
(法二)設拋物線的解析式為y=a(x-5)(x+1),
把(0,2)代入解析式得:2=-5a,
;

;(3分)

(2)①過點F作FD⊥x軸于D,
當點P在原點左側時,BP=6-t,OP=1-t;
在Rt△POC中,∠PCO+∠CPO=90°,
∵∠FPD+∠CPO=90°,
∴∠PCO=∠FPD;
∵∠POC=∠FDP,
∴△CPO∽△PFD,(5分)

∵PF=PE=2PC,
∴FD=2PO=2(1-t);(6分)
∴S△PBF==t2-7t+6(0≤t<1);(8分)
當點P在原點右側時,OP=t-1,BP=6-t;
∵△CPO∽△PFD,(9分)
∴FD=2(t-1);
∴S△PBF==-t2+7t-6(1<t<6);(11分)
②當0≤t<1時,S=t2-7t+6;
此時t在t=3.5的左側,S隨t的增大而減小,則有:
當t=0時,Smax=0-7×0+6=6;
當1<t<6時,S=-t2+7t-6;
由于1<3.5<6,故當t=3.5時,Smax=-3.5×3.5+7×3.5+6=6.25;
綜上所述,當t=3.5時,面積最大,且最大值為6.25.

(3)能;(12分)
①若F為直角頂點,過F作FD⊥x軸于D,由(2)可知BP=6-t,DP=2OC=4,
在Rt△OCP中,OP=t-1,
由勾股定理易求得CP2=t2-2t+5,那
么PF2=(2CP)2=4(t2-2t+5);
在Rt△PFB中,F(xiàn)D⊥PB,
由射影定理可求得PB=PF2÷PD=t2-2t+5,
而PB的另一個表達式為:PB=6-t,
聯(lián)立兩式可得t2-2t+5=6-t,即t=
P點坐標為(,0),
則F點坐標為:(,-1);

②B為直角頂點,那么此時的情況與(2)題類似,△PFB∽△CPO,且相似比為2,
那么BP=2OC=4,即OP=OB-BP=1,此時t=2,
P點坐標為(1,0).FD=2(t-1)=2,
則F點坐標為(5,2).(14分)
點評:此題考查了二次函數(shù)解析式的確定、以及三角形面積的求法、直角三角形的判定、相似三角形的判定和性質等重要知識點;在求有關動點問題時要注意分析題意分情況討論結果.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點P為x軸上的一個動點,但是點P不與點0、點A重合.連接CP,D點是線段AB上一點,連接PD.
(1)求點B的坐標;
(2)當∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標xoy中,以坐標原點O為圓心,3為半徑畫圓,從此圓內(包括邊界)的所有整數(shù)點(橫、縱坐標均為整數(shù))中任意選取一個點,其橫、縱坐標之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標中,等腰梯形ABCD的下底在x軸上,且B點坐標為(4,0),D點坐標為(0,3),則AC長為
5
5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標xOy中,已知點A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點,PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動點P從點O出發(fā),在梯形OABC的邊上運動,路徑為O→A→B→C,到達點C時停止.作直線CP.
(1)求梯形OABC的面積;
(2)當直線CP把梯形OABC的面積分成相等的兩部分時,求直線CP的解析式;
(3)當△OCP是等腰三角形時,請寫出點P的坐標(不要求過程,只需寫出結果).

查看答案和解析>>

同步練習冊答案