如圖,AD是∠BAC的平分線,DE⊥AB于E.若△ABC的面積為45cm2,AB=15cm,AC=12cm,則DE=
10
3
cm
10
3
cm
分析:過點D作DF⊥AC于F,根據(jù)角平分線上的點到角的兩邊的距離相等可得DE=DF,再利用△ABC的面積列式計算即可得解.
解答:解:如圖,過點D作DF⊥AC于F,
∵AD是∠BAC的平分線,
∴DE⊥AB,
∴S△ABC=
1
2
AB•DE+
1
2
AC•DF=
1
2
×15•DE+
1
2
×12•DE=45,
解得DE=
10
3
cm.
故答案為:
10
3
cm.
點評:本題考查了角平分線上的點到角的兩邊的距離相等的性質(zhì),熟記性質(zhì)并作輔助線是解題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,AD是∠BAC的角平分線,交△ABC的邊BC于點D,BH⊥AD,CK⊥AD,垂足分別為H、K.
求證:(1)△CHD∽△BKD;
(2)AB•DH=AC•DK.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,AD是∠BAC的平分線,點E在AB上,且AE=AC,EF∥BC交AC于點F.
試說明:EC平分∠DEF.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,AD是∠BAC的角平分線,交△ABC的邊BC于點D,BH⊥AD,CK⊥AD,垂足分別為H、K,你能說明AB•DK=AC•DH嗎?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,AD是∠BAC的平分線,寫出圖中相等的角:
∠BAD=∠CAD
∠BAD=∠CAD

查看答案和解析>>

同步練習冊答案