如圖,直線軸、軸分別交于、兩點,△繞點順時針旋轉90后得到△,則點的對應點坐標為

A.(3,4)B.(7,4)
C.(7,3)D.(3,7)

C

解析試題分析:∵y=-+4 與x軸 y軸相交 易得A(3,0) B(0,4) ∴AO="3" BO="4" ∵△AOB繞點A順時針旋轉90后得到,△AOB≌△AO′B′ ∴∠O′AB′="∠OAB" 又∵∠BAB′="90" ∴∠B′AX=∠BAO”∴∠OAO′=90∴∠B′=∠B′AX ∴OA∥O′B′ ∴B′(7,3)
考點:一次函數(shù)的知識,圖形旋轉后的性質(zhì),三角形全等及等量代換,坐標點的定義。
點評:掌握一次函數(shù)的圖像與坐標軸的交點求法,旋轉后的圖形大小形狀不變,同角的余角相等,坐標點的簡單求法。有點難度,但不大。

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(本題10分)如圖 ,直線軸的交點坐標為A(0,1),與軸的交點坐標為B(-3,0);P、Q分別是軸和直線AB上的一動

點,在運動過程中,始終保持QA=QP;△APQ沿
直線PQ翻折得到△CPQ,A點的對稱點是點C.
(1)求直線AB的解析式.
(2)是否存在點P,使得點C恰好落在直線AB
上?若存在,請求出點P的坐標;若不存在,
請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,直線l與x軸、y軸的正半軸分別交于A、B兩點,OA、OB的長分別是關于x的方程x2﹣14x+4(AB+2)=0的兩個根(OB>OA),P是直線l上A、B兩點之間的一動點(不與A、B重合),PQ∥OB交OA于點Q
【小題1】求tan∠BAO的值
【小題2】若SPAQ=S四邊形OQPB時,請確定點P在AB上的位置,并求出線段PQ的長;
【小題3】當點P在線段AB上運動時,在y軸上是否存在點M,使△MPQ為等腰直角三角形?若存在,請直接寫出點M的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2013屆浙江臨安於潛第一初級中學九年級上期末綜合考試數(shù)學試卷(一)(帶解析) 題型:解答題

(本題12分)
如圖,直線軸、軸分別交于A、B兩點,動點P從A點開始在線段AO上以每秒3個長度單位的速度向原點O運動. 動直線EF從軸開始以每秒1個長度單位的速度向上平行移動(即EF∥軸),并且分別與軸、線段AB交于E、F點.連結FP,設動點P與動直線EF同時出發(fā),運動時間為t秒.

(1)當t=1秒時,求梯形OPFE的面積;
(2)t為何值時,梯形OPFE的面積最大,最大面積是多少?
(3)設t的值分別取t1、t2時(t1≠t2),所對應的三角形分別為△AF1P1和△AF2P2.試判斷這兩個三角形是否相似,請證明你的判斷.

查看答案和解析>>

科目:初中數(shù)學 來源:2012-2013學年浙江臨安於潛第一初級中學九年級上期末綜合考試數(shù)學試卷(一)(解析版) 題型:解答題

(本題12分)

如圖,直線軸、軸分別交于A、B兩點,動點P從A點開始在線段AO上以每秒3個長度單位的速度向原點O運動. 動直線EF從軸開始以每秒1個長度單位的速度向上平行移動(即EF∥軸),并且分別與軸、線段AB交于E、F點.連結FP,設動點P與動直線EF同時出發(fā),運動時間為t秒.

(1)當t=1秒時,求梯形OPFE的面積;

(2)t為何值時,梯形OPFE的面積最大,最大面積是多少?

(3)設t的值分別取t1、t2時(t1≠t2),所對應的三角形分別為△AF1P1和△AF2P2.試判斷這兩個三角形是否相似,請證明你的判斷.

 

查看答案和解析>>

科目:初中數(shù)學 來源:2011年初中畢業(yè)升學考試(福建漳州卷)數(shù)學 題型:解答題

(11·漳州)(滿分14分)如圖1,拋物線ymx2-11mx+24m (m<0) 與x軸交于B、C兩點(點B在點C的左側),拋物線另有一點A在第一象限內(nèi),且∠BAC=90°.

(1)填空:OB_   ▲   ,OC_   ▲  

(2)連接OA,將△OAC沿x軸翻折后得△ODC,當四邊形OACD是菱形時,求此時拋物線的解析式;

(3)如圖2,設垂直于x軸的直線lxn與(2)中所求的拋物線交于點M,與CD交于點N,若直線l 沿x軸方向左右平移,且交點M始終位于拋物線上A、C兩點之間時,試探究:當n為何值時,四邊形AMCN的面積取得最大值,并求出這個最大值.

 

 

 

 

 

 

 

 

查看答案和解析>>

同步練習冊答案