在Rt△ABC中,CA=CB,AB=9,點D在BC邊上,連接AD,若tan∠CAD=,則BD的長為   
【答案】分析:根據(jù)等腰直角三角形的性質(zhì)可求AC,BC的長,在Rt△ACD中,根據(jù)銳角三角函數(shù)的定義可求CD的長,BD=BC-CD,代入數(shù)據(jù)計算即可求解.
解答:解:如圖,∵在Rt△ABC中,CA=CB,AB=9,
∴CA2+CB2=AB2,
∴CA=CB=9,
∵在Rt△ACD中,tan∠CAD=,
∴CD=3,
∴BD=BC-CD=9-3=6.
故答案為:6.
點評:綜合考查了等腰直角三角形的性質(zhì),勾股定理,銳角三角函數(shù)的定義,線段的和差關(guān)系,難度不大.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,在Rt△ABC中,∠C=90°,AC=12,BC=9,D是AB上一點,以BD為直徑的⊙O切AC于E,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知:在Rt△ABC中,∠C=90°,AB=12,點D是AB的中點,點O是△ABC的重心,則OD的長為( 。
A、12B、6C、2D、3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在Rt△ABC中,已知a及∠A,則斜邊應(yīng)為(  )
A、asinA
B、
a
sinA
C、acosA
D、
a
cosA

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在Rt△ABC中,∠C=90°,CD⊥AB于D,CD:DB=1:3.求tanA和tanB.(要求畫出圖形)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在Rt△ABC中,∠C=90°,CD⊥AB于D,且AD:BD=9:4,則AC:BC的值為( 。
A、9:4B、9:2C、3:4D、3:2

查看答案和解析>>

同步練習(xí)冊答案