22、如圖,在四邊形ABCD中,AB=BC,BF是∠ABC的平分線,AF∥DC,連接AC,CF.求證:CA是∠DCF的平分線.
分析:先證△ABF≌△CBF,得出AF=AC,利用等腰三角形的性質可知∠3=∠4,再利用平行線的性質可證出∠4=∠5,等量代換,可得:∠3=∠5.那么AC就是∠DCF的平分線.
解答:證明:∵BF是∠ABC的平分線,
∴∠1=∠2,
又AB=BC,BF=BF,
∴△ABF≌△CBF,
∴FA=FC,
∴∠3=∠4,
又AF∥DC,
∴∠4=∠5,
∴∠3=∠5,
∴CA是∠DCF的平分線.
點評:本題考查了角平分線的性質、判定,全等三角形的判定和性質;找著并利用△ABF≌△CBF是正確解答題目的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2013•赤峰)如圖,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,點D從點C出發(fā)沿CA方向以4cm/秒的速度向點A勻速運動,同時點E從點A出發(fā)沿AB方向以2cm/秒的速度向點B勻速運動,當其中一個點到達終點時,另一個點也隨之停止運動.設點D、E運動的時間是t秒(0<t≤15).過點D作DF⊥BC于點F,連接DE,EF.
(1)求證:AE=DF;
(2)四邊形AEFD能夠成為菱形嗎?如果能,求出相應的t值,如果不能,說明理由;
(3)當t為何值時,△DEF為直角三角形?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,在四邊形ABC中,AD=BC,AB=CD.
求證:AB∥CD,AD∥BC.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在Rt△ABC中,∠BAC=90°,將△ABC沿線段BC向右平移得到△DEF,使CE=AE,連結AD、AE、CD,則下列結論:①AD∥BE且AD=BE;②∠ABC=∠DEF;③ED⊥AC;④四邊形AECD為菱形,其中正確的共有( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

已知:如圖,在四邊形ABC中,AD=BC,AB=CD.
求證:AB∥CD,AD∥BC.

查看答案和解析>>

科目:初中數(shù)學 來源:浙江省同步題 題型:證明題

已知:如圖,在四邊形ABC中,AD=BC,AB=CD.求證:AB∥CD,AD∥BC.

查看答案和解析>>

同步練習冊答案