已知在等腰梯形ABCD中,AD∥BC,AB=AD=CD,AC⊥AB,那么cotB=   
【答案】分析:利用三角形內(nèi)角和計(jì)算可得∠B的度數(shù),也就求得了cotB.
解答:解:∵AB=AD=CD,
∴∠ABC=∠BCD,∠DAC=∠ACD,
∵AD∥BC,
∴∠DAC=∠ACB,
∴∠ACD=∠ACB,
∴∠ABC=2∠ACB,
∵AC⊥AB,
∴∠ABC=60°,
∴cotB=
故答案為:
點(diǎn)評(píng):綜合考查了等腰梯形及解直角三角形的知識(shí);判斷出∠B的度數(shù)是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

26、如圖所示,已知在梯形ABCD中,AD∥BC,∠ABC=60°,BD平分∠ABC,且BD⊥DC.
(1)求證:梯形ABCD是等腰梯形;
(2)當(dāng)CD=1時(shí),求等腰梯形ABCD的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1)填空:如圖1,在正方形PQRS中,已知點(diǎn)M、N分別在邊QR、RS上,且QM=RN,連接PN、SM相交于點(diǎn)O,則∠POM=
 
度;
(2)如圖2,在等腰梯形ABCD中,已知AB∥CD,BC=CD,∠ABC=60度.以此為部分條件,精英家教網(wǎng)構(gòu)造一個(gè)與上述命題類(lèi)似的正確命題并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1)填空:如圖1,在正△ABC中,M、N分別在BC、AC上,且BM=CN,連AM、BN交于點(diǎn)O,則∠AON=
 
°
(2)填空:如圖2,在正方形PQRS中,已知點(diǎn)M、N分別在邊QR、RS上,且QM=RN,連接PN、SM相交于點(diǎn)O,則∠POM=
 
°.
(3)如圖3,在等腰梯形ABCD中,已知AB∥CD,BC=CD,∠ABC=60°.以此為部分條件,構(gòu)造一個(gè)與上述命題類(lèi)似的正確命題并加以證明.
(4)在(1)的條件下,把直線(xiàn)AM平移到圖4的直線(xiàn)EOF位置,
①寫(xiě)出所有與△BOF相似的三角形:
 

②若點(diǎn)N是AC中點(diǎn),(其它條件不變)試探索線(xiàn)段EO與FO的數(shù)量關(guān)系,并說(shuō)明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2005•閘北區(qū)二模)已知:如圖,在等腰梯形ABCD中,AD∥BC,AB=DC,過(guò)點(diǎn)D作AC的平行線(xiàn)DE,交BA的延長(zhǎng)線(xiàn)于點(diǎn)E.求證:
(1)△ABC≌△DCB;
(2)DE•DC=AE•BD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:單選題

如圖,已知在等腰梯形ABCD中,AD∥BC,∠ABC=45°,兩腰的和為8cm,點(diǎn)E,F(xiàn)分別是對(duì)角線(xiàn)AC,BD的中點(diǎn),點(diǎn)G是底邊BC的中點(diǎn),則EF的長(zhǎng)為


  1. A.
    4數(shù)學(xué)公式cm
  2. B.
    2數(shù)學(xué)公式cm
  3. C.
    數(shù)學(xué)公式cm
  4. D.
    無(wú)法確定

查看答案和解析>>

同步練習(xí)冊(cè)答案