(2005•濰坊)(A題)某市經(jīng)濟(jì)開(kāi)發(fā)區(qū)建有B、C、D三個(gè)食品加工廠(chǎng),這三個(gè)工廠(chǎng)和開(kāi)發(fā)區(qū)A處的自來(lái)水廠(chǎng)正好在一個(gè)矩形的四個(gè)頂點(diǎn)上,它們之間有公路相通,且AB=CD=900米,AD=BC=1700米.自來(lái)水公司已經(jīng)修好一條自來(lái)水主管道AN,BC兩廠(chǎng)之間的公路與自來(lái)水管道交于E處,EC=500米.若自來(lái)水主管道到各工廠(chǎng)的自來(lái)水管道由各廠(chǎng)負(fù)擔(dān),每米造價(jià)800元.
(1)要使修建自來(lái)水管道的造價(jià)最低,這三個(gè)工廠(chǎng)的自來(lái)水管道路線(xiàn)應(yīng)怎樣設(shè)計(jì)并在圖形中畫(huà)出;
(2)求出各廠(chǎng)所修建的自來(lái)水管道的最低的造價(jià)各是多少元?

(B題)如圖,已知平行四邊形ABCD及四邊形外一直線(xiàn)l,四個(gè)頂點(diǎn)A、B、C、D到直線(xiàn)l的距離分別為a、b、c、d.
(1)觀察圖形,猜想得出a、b、c、d滿(mǎn)足怎樣的關(guān)系式?證明你的結(jié)論.
(2)現(xiàn)將l向上平移,你得到的結(jié)論還一定成立嗎?請(qǐng)分情況寫(xiě)出你的結(jié)論.
【答案】分析:A:(1)根據(jù)“垂線(xiàn)段最短”即可畫(huà)出使修建自來(lái)水管道的造價(jià)最低時(shí),這三個(gè)工廠(chǎng)的自來(lái)水管道路線(xiàn);
(2)根據(jù)勾股定理和直角三角形的面積公式求得BH的長(zhǎng),根據(jù)相似三角形的對(duì)應(yīng)邊的比相等分別求得CF,DG的長(zhǎng),再根據(jù)每米造價(jià)800元求得價(jià)錢(qián).
B:(1)此題可以連接平行四邊形的對(duì)角線(xiàn),交點(diǎn)是O.作OO1⊥l于O1.根據(jù)梯形的中位線(xiàn)定理得到2OO1=DD1+BB1=b+d=AA1+CC1=a+c.
(2)將l向上平移,分別有直線(xiàn)l過(guò)B點(diǎn)時(shí);直線(xiàn)l過(guò)B點(diǎn)與D點(diǎn)之間時(shí);直線(xiàn)l過(guò)D點(diǎn)時(shí);直線(xiàn)l過(guò)C點(diǎn)與D點(diǎn)之間時(shí);直線(xiàn)l過(guò)C點(diǎn)時(shí);直線(xiàn)l過(guò)C點(diǎn)上方時(shí).結(jié)合三角形的中位線(xiàn)定理和梯形的中位線(xiàn)定理進(jìn)行分析.
解答:(A題)解:(1)過(guò)B、C、D分別作AN的垂線(xiàn)段BH、CF、DG,交AN于H、F、G,BH、CF、DG即為所求的造價(jià)最低的管道路線(xiàn).
圖形如圖所示.(3分)

(2)(法一)BE=BC-CE=1700-500=1200(米),
AE==1500(米),
∵△ABE∽△CFE,
得到:
∴CF===300(米).(5分)
∵△BHE∽△CFE,
得到
∴BH===720(米).(6分)
∵△ABE∽△DGA,
,
∴DG===1020(米).(9分)
所以,B、C、D三廠(chǎng)所建自來(lái)水管道的最低造價(jià)分別是
720×800=576000(元),300×800=240000(元),1020×800=816000(元)    (10分)
法二(設(shè)∠AEB=∂,利用三角函數(shù)可求得BH、CF、DG的長(zhǎng))


(B題)(1)a+c=b+d.(2分)
證明:連接AC、BD,且AC、BD相交于點(diǎn)O,OO1為點(diǎn)O到l的距離,
∴OO1為直角梯形BB1D1D的中位線(xiàn),
∴2OO1=DD1+BB1=b+d;
同理:2OO1=AA1+CC1=a+c.
∴a+c=b+d    (4分)

(2)不一定成立(5分)
分別有以下情況:
直線(xiàn)l過(guò)A點(diǎn)時(shí),c=b+d;
直線(xiàn)l過(guò)A點(diǎn)與B點(diǎn)之間時(shí),c-a=b+d;
直線(xiàn)l過(guò)B點(diǎn)時(shí),c-a=d;
直線(xiàn)l過(guò)B點(diǎn)與D點(diǎn)之間時(shí),a-c=b-d;
直線(xiàn)l過(guò)D點(diǎn)時(shí),a-c=b;
直線(xiàn)l過(guò)C點(diǎn)與D點(diǎn)之間時(shí),a-c=b+d;
直線(xiàn)l過(guò)C點(diǎn)時(shí),a=b+d;
直線(xiàn)l過(guò)C點(diǎn)上方時(shí),a+c=b+d.     (10分)

點(diǎn)評(píng):A中,考查了垂線(xiàn)段最短的性質(zhì)以及運(yùn)用勾股定理、直角三角形的面積和相似三角形的性質(zhì)進(jìn)行計(jì)算的方法;
B中,主要是運(yùn)用了梯形的中位線(xiàn)定理和三角形的中位線(xiàn)定理.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2005年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(06)(解析版) 題型:解答題

(2005•濰坊)拋物線(xiàn)y=ax2+bx+c交x軸于A、B兩點(diǎn),交y軸于點(diǎn)C,已知拋物線(xiàn)的對(duì)稱(chēng)軸為x=1,B(3,0),C(0,-3),
(1)求二次函數(shù)y=ax2+bx+c的解析式;
(2)在拋物線(xiàn)對(duì)稱(chēng)軸上是否存在一點(diǎn)P,使點(diǎn)P到B、C兩點(diǎn)距離之差最大?若存在,求出P點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)平行于x軸的一條直線(xiàn)交拋物線(xiàn)于M、N兩點(diǎn),若以MN為直徑的圓恰好與x軸相切,求此圓的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2005年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(04)(解析版) 題型:解答題

(2005•濰坊)某工廠(chǎng)生產(chǎn)的某種產(chǎn)品按質(zhì)量分為10個(gè)檔次,生產(chǎn)第一檔次(即最低檔次)的產(chǎn)品一天生產(chǎn)76件,每件利潤(rùn)10元,每提高一個(gè)檔次,利潤(rùn)每件增加2元.
(1)每件利潤(rùn)為16元時(shí),此產(chǎn)品質(zhì)量在第幾檔次?
(2)由于生產(chǎn)工序不同,此產(chǎn)品每提高一個(gè)檔次,一天產(chǎn)量減少4件.若生產(chǎn)第x檔的產(chǎn)品一天的總利潤(rùn)為y元(其中x為正整數(shù),且1≤x≤10),求出y關(guān)于x的函數(shù)關(guān)系式;若生產(chǎn)某檔次產(chǎn)品一天的總利潤(rùn)為1080元,該工廠(chǎng)生產(chǎn)的是第幾檔次的產(chǎn)品?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年福建省泉州市初中畢業(yè)班數(shù)學(xué)總復(fù)習(xí)綜合練習(xí)(三)(解析版) 題型:解答題

(2005•濰坊)拋物線(xiàn)y=ax2+bx+c交x軸于A、B兩點(diǎn),交y軸于點(diǎn)C,已知拋物線(xiàn)的對(duì)稱(chēng)軸為x=1,B(3,0),C(0,-3),
(1)求二次函數(shù)y=ax2+bx+c的解析式;
(2)在拋物線(xiàn)對(duì)稱(chēng)軸上是否存在一點(diǎn)P,使點(diǎn)P到B、C兩點(diǎn)距離之差最大?若存在,求出P點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)平行于x軸的一條直線(xiàn)交拋物線(xiàn)于M、N兩點(diǎn),若以MN為直徑的圓恰好與x軸相切,求此圓的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2005年山東省濰坊市中考數(shù)學(xué)試卷(課標(biāo)卷)(解析版) 題型:解答題

(2005•濰坊)拋物線(xiàn)y=ax2+bx+c交x軸于A、B兩點(diǎn),交y軸于點(diǎn)C,已知拋物線(xiàn)的對(duì)稱(chēng)軸為x=1,B(3,0),C(0,-3),
(1)求二次函數(shù)y=ax2+bx+c的解析式;
(2)在拋物線(xiàn)對(duì)稱(chēng)軸上是否存在一點(diǎn)P,使點(diǎn)P到B、C兩點(diǎn)距離之差最大?若存在,求出P點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)平行于x軸的一條直線(xiàn)交拋物線(xiàn)于M、N兩點(diǎn),若以MN為直徑的圓恰好與x軸相切,求此圓的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2005年山東省濰坊市中考數(shù)學(xué)試卷(課標(biāo)卷)(解析版) 題型:解答題

(2005•濰坊)某工廠(chǎng)生產(chǎn)的某種產(chǎn)品按質(zhì)量分為10個(gè)檔次,生產(chǎn)第一檔次(即最低檔次)的產(chǎn)品一天生產(chǎn)76件,每件利潤(rùn)10元,每提高一個(gè)檔次,利潤(rùn)每件增加2元.
(1)每件利潤(rùn)為16元時(shí),此產(chǎn)品質(zhì)量在第幾檔次?
(2)由于生產(chǎn)工序不同,此產(chǎn)品每提高一個(gè)檔次,一天產(chǎn)量減少4件.若生產(chǎn)第x檔的產(chǎn)品一天的總利潤(rùn)為y元(其中x為正整數(shù),且1≤x≤10),求出y關(guān)于x的函數(shù)關(guān)系式;若生產(chǎn)某檔次產(chǎn)品一天的總利潤(rùn)為1080元,該工廠(chǎng)生產(chǎn)的是第幾檔次的產(chǎn)品?

查看答案和解析>>

同步練習(xí)冊(cè)答案