【題目】已知,直線,點為平面內(nèi)一點,連接與.
(1)如圖1,點在直線、之間,若,,求的度數(shù).
(2)如圖2,點在直線、之間,與的角平分線相交于點,寫出與之間的數(shù)量關(guān)系,并說明理由.
(3)如圖3,點在直線下方,與的角平分線相交于點,直接寫出與的數(shù)量關(guān)系.
【答案】(1)∠APC=80°;(2)∠AKC=∠APC;(3)∠AKC=∠APC.
【解析】
(1)先過P作PE∥AB,根據(jù)平行線的性質(zhì)即可得到∠APE=∠BAP,∠CPE=∠DCP,再根據(jù)∠APC=∠APE+∠CPE=∠BAP+∠DCP進(jìn)行計算即可;
(2)過K作KE∥AB,根據(jù)KE∥AB∥CD,可得∠AKE=∠BAK,∠CKE=∠DCK,進(jìn)而得到∠AKC=∠AKE+∠CKE=∠BAK+∠DCK,同理可得,∠APC=∠BAP+∠DCP,再根據(jù)角平分線的定義,得出∠BAK+∠DCK=∠BAP+∠DCP=(∠BAP+∠DCP)=∠APC,進(jìn)而得到∠AKC=∠APC;
(3)過K作KE∥AB,根據(jù)KE∥AB∥CD,可得∠BAK=∠AKE,∠DCK=∠CKE,進(jìn)而得到∠AKC=∠AKE-∠CKE=∠BAK-∠DCK,同理可得,∠APC=∠BAP-∠DCP,再根據(jù)角平分線的定義,得出∠BAK-∠DCK=∠BAP-∠DCP=(∠BAP-∠DCP)=∠APC,進(jìn)而得到∠AKC=∠APC.
(1)如圖1,過P作PE∥AB,
∵AB∥CD,
∴PE∥AB∥CD,
∴∠APE=∠BAP,∠CPE=∠DCP,
∴∠APC=∠APE+∠CPE=∠BAP+∠DCP=60°+20°=80°;
(2)∠AKC=∠APC.
理由:如圖2,過K作KE∥AB,
∵AB∥CD,
∴KE∥AB∥CD,
∴∠AKE=∠BAK,∠CKE=∠DCK,
∴∠AKC=∠AKE+∠CKE=∠BAK+∠DCK,
過P作PF∥AB,
同理可得,∠APC=∠BAP+∠DCP,
∵∠BAP與∠DCP的角平分線相交于點K,
∴∠BAK+∠DCK=∠BAP+∠DCP= (∠BAP+∠DCP)= ∠APC,
∴∠AKC=∠APC;
(3)∠AKC=∠APC.
理由:如圖3,過K作KE∥AB,
∵AB∥CD,
∴KE∥AB∥CD,
∴∠BAK=∠AKE,∠DCK=∠CKE,
∴∠AKC=∠AKE∠CKE=∠BAK∠DCK,
過P作PF∥AB,
同理可得,∠APC=∠BAP∠DCP,
∵∠BAP與∠DCP的角平分線相交于點K,
∴∠BAK∠DCK=∠BAP∠DCP=(∠BAP∠DCP)=∠APC,
∴∠AKC=∠APC.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店在2014年至2016年期間銷售一種禮盒.2014年,該商店用3500元購進(jìn)了這種禮盒并且全部售完;2016年,這種禮盒的進(jìn)價比2014年下降了11元/盒,該商店用2400元購進(jìn)了與2014年相同數(shù)量的禮盒也全部售完,禮盒的售價均為60元/盒.
(1)2014年這種禮盒的進(jìn)價是多少元/盒?
(2)若該商店每年銷售這種禮盒所獲利潤的年增長率相同,問年增長率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,△ABC直角三角形,延長AB到D,使BD=BC,在BC上取BE=AB,連接DE.△ABC順時針旋轉(zhuǎn)后能與△EBD重合,那么:
(1)旋轉(zhuǎn)中心是哪一點?旋轉(zhuǎn)角是多少度?
(2)AC與DE的關(guān)系怎樣?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個有進(jìn)水管與出水管的容器,從某時刻開始的4分內(nèi)只進(jìn)水不出水,在隨后的若干分內(nèi)既進(jìn)水又出水,之后只有出水不進(jìn)水,每分鐘的進(jìn)水量和出水量是兩個常數(shù),容器內(nèi)的水量(單位:升)與時間(單位:分)之間的關(guān)系如圖所示,則進(jìn)水速度是______升/分,出水速度是______升/分,的值為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù) y=-2x+5 的圖像分別與 x 軸,y 軸交于點A、B,以線段AB 為邊在第一象限內(nèi)作等腰 RtABC,BAC=90 ,求過 B、C 兩點的直線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c的圖象上部分點的橫坐標(biāo)x與縱坐標(biāo)y的對應(yīng)值如下表:
那么關(guān)于它的圖象,下列判斷正確的是( 。
A. 開口向上 B. 與x軸的另一個交點是(3,0)
C. 與y軸交于負(fù)半軸 D. 在直線x=1的左側(cè)部分是下降的
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計算
(1)求值:
(2)用消元法解方程組時,兩位同學(xué)的解法如下:
解法一:
由①-②,得.
解法二:
由②得,,③
把①代入③,得.
①反思:上述兩個解題過程中有無計算錯誤?若有誤,請在錯誤處打“×”.
②請選擇一種你喜歡的方法,完成解答.
(3)求不等式組的正整數(shù)解.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市中學(xué)生舉行足球聯(lián)賽,共賽了17輪(即每隊均需參賽17場),記分辦法是勝-場得3分。平場得1分,負(fù)一場得0分.
(1)在這次足球賽中,若小虎足球隊踢平場數(shù)與踢負(fù)場數(shù)相同,共積16分,求該隊勝了幾場;
(2)在這次足球賽中,若小虎足球隊總積分仍為16分,且踢平場數(shù)是踢負(fù)場數(shù)的整數(shù)倍,試推算小虎足球隊踢負(fù)場數(shù)的情況有幾種,
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com