精英家教網(wǎng)如圖,AB為半圓的直徑,O為圓心,AB=6,延長BA到F,使FA=AB,若P為線段AF上的一個動點(不與A重合),過P點作半圓的切線,切點為C,過B點作BE⊥PC交PC的延長線于E,設AC=x,AC+BE=y,求y與x的函數(shù)關系式及x的取值范圍.
分析:求y與x的函數(shù)關系式,由題意發(fā)現(xiàn)需求出BE,通過證明Rt△ABC∽Rt△CBE即可;P為線段AF上的一個動點(不與A重合),C為切點,可知當P點與A點重合時,AC=0最小,當P點與F點重合時,x=AC最大,求出AC的值,即可確定x的取值范圍.
解答:精英家教網(wǎng)解:連接BC.
∵AB是⊙O的直徑∴∠ACB=90°,BC2=36-x2(2分)
又∵PC切⊙O于C∴∠BAC=∠BCE
∴Rt△ABC∽Rt△CBE(3分)
AB
BC
=
BC
BE

即BE=
BC2
AB
=6-
x2
6

∴y=-
x2
6
+x+6(5分)
當P點與A點重合時,AC=0最小
∵P不與A重合,
∴x>0(6分)
當P點與F點重合時,x=AC最大,此時有PC2=PA•PB=6×12
∴PC=6
2

又∵∠P=∠P,∠PBC=∠PCA
∴△PCA∽△PBC
AC
CB
=
PC
PB

AC
BC
=
6
2
12
∴BC=
2
AC

由勾股定理得AC2+BC2=AB2,
AC2+(
2
AC)2=36

AC=2
3
(9分)
∴函數(shù)關系式為y=-
x2
6
+x+6(0<x≤2
3
)(10分).
點評:本題考查求二次函數(shù)的關系式及取值范圍,注意結(jié)合切線的性質(zhì),相似三角形的判斷和性質(zhì)探求解決的方法.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖是某學校田徑體育場一部分的示意圖,第一條跑道每圈為400米,跑道分直道和彎道,直道為長相等的平行線段,彎道為同心的半圓型,彎道與直道相連接,已知直精英家教網(wǎng)道BC的長86.96米,跑道的寬為l米.(π=3.14,結(jié)果精確到0.01)
(1)求第一條跑道的彎道部分
AB
的半徑.
(2)求一圈中第二條跑道比第一條跑道長多少米?
(3)若進行200米比賽,求第六道的起點F與圓心O的連線FO與OA的夾角∠FOA的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•咸豐縣二模)如圖,已知在Rt△ABC中,∠ACB=90°,AB=10,分別以AC、BC為直經(jīng)作半圓,面積分別記為S1、S2,則S1+S2的值等于( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(12分)如圖所示,一內(nèi)壁光滑的細管彎成半徑為R=0.4 m的半圓形軌道CD,豎直放置,其內(nèi)徑略大于小球的直徑,水平軌道與豎直半圓軌道在C點連接完好.置于水平軌道上的彈簧左端與豎直墻壁相連,B處為彈簧的自然狀態(tài).將一個質(zhì)量為m=0.8 kg的小球放在彈簧的右側(cè)后,用力向左側(cè)推小球而壓縮彈簧至A處,然后將小球由靜止釋放,小球運動到C處后對軌道的壓力為F1=58 N.水平軌道以B處為界,左側(cè)AB段長為x=0.3 m,與小球的動摩擦因數(shù)為μ=0.5,右側(cè)BC段光滑.g=10 m/s2,求:

(1)彈簧在壓縮時所儲存的彈性勢能.
(2)小球運動到軌道最高處D點時對軌道的壓力.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:單選題

如圖,已知在Rt△ABC中,∠ACB=90°,AB=10,分別以AC、BC為直經(jīng)作半圓,面積分別記為S1、S2,則S1+S2的值等于


  1. A.
    8πB
  2. B.
    16π
  3. C.
    25π
  4. D.
    12.5π

查看答案和解析>>

科目:初中數(shù)學 來源:2012年湖北省恩施州咸豐縣中考數(shù)學二模試卷(解析版) 題型:選擇題

如圖,已知在Rt△ABC中,∠ACB=90°,AB=10,分別以AC、BC為直經(jīng)作半圓,面積分別記為S1、S2,則S1+S2的值等于( )

A.8πB
B.16π
C.25π
D.12.5π

查看答案和解析>>

同步練習冊答案