【題目】如圖,在等腰直角三角形中,,以為一邊向外做平行四邊形,連接,井延長,延長,且

1)如圖1,若,求;

2)如圖1,求證:;

3)如圖2,延長,連接,過的平行線交,交,連接,若,平行四邊形面積為96.求的長.

【答案】145°;(2)見詳解;(3FN+AN=5+

【解析】

1)首先證明四邊形ABDE是菱形,然后利用菱形的性質(zhì)求出∠EDB的度數(shù),進而求出∠DAG,ECB的度數(shù)最后利用三角形外角的性質(zhì)即可求解;
2)連接BF,由菱形的性質(zhì)推出△EAF≌△BAF(SAS),根據(jù)全等三角形的性質(zhì)推出∠EFA=BFA=45°,進而∠CFB=90°,推出BF2+CF2=BC2,BC2=AB2+AC2=2AB2=2DE2,從而得出BF2+CF2=2DE2

3)首先通過菱形的面積公式求出BE的長度,進面可求出英形的邊長,然后利用三角形中位線的可得出OM,MN.CH的長度,進而利用勾股定理即可求出AH的長度,然后由(2)可知∠BFC=90°,根據(jù)中線的性質(zhì)求得FN=BC=5,則答案可解.

解:(1)∵,,

AB=BD,

∴平行四邊形ABDE是菱形,

AB=BD=DE=EA=AC

DEAB,∠BAC=90°

∴∠DGA=90°

∵∠EDA=70°

∴∠DAG=180°-EDA-DGA=180°-70°-90°=20°=CAF

DE=EA,

∴∠EDA=EAD=70°

∴∠GAE=EAD-CAF=70°-20°=50°

EA=AC

∴∠AEC=ACE

∵∠GAE=AEC+ACE=2ACE=50°

∴∠ACE=25°

∴∠EFD=ACE +CAF=25°+20°=45°

故答案為:∠EFD=45°

2)證明:如圖1,連接BF,

∵平行四邊形ABDE是菱形,

AE=AB,∴∠EAD=BAD=70°

∴∠EAF=BAF

在△EAF和△BAF

∴△EAF≌△BAF(SAS)

EF=BF,∠EFA=BFA=45°,

∴∠EFB=90°,

∴∠CFB=90°,

BF2+CF2=BC2,BC2=AB2+AC2=2AB2=2DE2

BF2+CF2=2DE2

3)如圖2,連接BF

S菱形ABDE=AD·BE=96,AD=12

BE=16,

OE=BE=8OD=AD=6

DE=

BC=

RtOEF是等腰直角三角形,

EF=2OE,

由(2)結(jié)論得,CF=2OD

EF=8,CF=6

EF=14

OBE的中點,ONEC

ON=EC=7

MN=ON-OM=

CH=

∵∠BAC=90°,

∴∠HAC=90°

AH=

由(2)可知:∠BFC=90°,NBC的中點,

FN=BC=5,

FN+AN=5+

故答案為:FN+AN=5+

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩名運動員同時從A地出發(fā)到B地,在直線公路上進行騎自行車訓練.如圖,反映了甲、乙兩名自行車運動員在公路上進行訓練時的行駛路程S(千米)與行駛時間t(小時)之間的關(guān)系,下列四種說法:①甲的速度為40千米/小時;②乙的速度始終為50千米/小時;③行駛1小時時,乙在甲前10千米;④甲、乙兩名運動員相距5千米時,t=0.5t=2t=5.其中正確的個數(shù)有( )

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,對角線ACBD相交于點O,點E,F分別為OB,OD的中點延長AEG,使EG=AE,連接CG

1)求證:ABECDF;

2)當AB=AC時,判斷四邊形EGCF是什么形狀?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】【問題情境】

已知矩形的面積為aa為常數(shù),a0),當該矩形的長為多少時,它的周長最小?最小值是多少?

【數(shù)學模型】

設(shè)該矩形的長為x,周長為y,yx的函數(shù)表達式為y=2x+ )(x0).

【探索研究】

小彬借鑒以前研究函數(shù)的經(jīng)驗,先探索函數(shù)y=x+的圖象性質(zhì)

1)結(jié)合問題情境,函數(shù)y=x+ 的自變量x的取值范圍是x0下表是yx的幾組對應(yīng)值

寫出m的值;

畫出該函數(shù)圖象結(jié)合圖象,得出當x=________y有最小值,y最小=________;

提示在求二次函數(shù)y=ax2+bx+ca≠0)的最大(小)值時,除了通過觀察圖象,還可以通過配方得到.試用配方法求函數(shù)y=x+ x0)的最小值,解決問題(2).

2)【解決問題】

直接寫出問題情境中問題的結(jié)論

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,排球運動員站在點O處練習發(fā)球,將球從點O正上方2米的點A處發(fā)出把球看成點,其運行的高度y(米)與運行的水平距離x(米)滿足關(guān)系式y=ax﹣62+h,已知球網(wǎng)與點O的水平距離為9米,高度為2.43米,球場的邊界距點O的水平距離為18米.

1)當h=2.6時,求yx的函數(shù)關(guān)系式.

2)當h=2.6時,球能否越過球網(wǎng)?球會不會出界?請說明理由.

3)若球一定能越過球網(wǎng),又不出邊界.則h的取值范圍是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是圓O的弦,OAOD,ABOD相交于點C,且CD=BD

1)判斷BD與圓O的位置關(guān)系,并證明你的結(jié)論;

2)當OA=3,OC=1時,求線段BD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,點 A﹣20),B20),C0,2,點 D,點E分別是 ACBC的中點,將CDE繞點C逆時針旋轉(zhuǎn)得到CDE,及旋轉(zhuǎn)角為α,連接 AD,BE

1如圖,若 α90°,當 AD′∥CE時,求α的大;

2如圖,若 90°α180°,當點 D落在線段 BE上時,求 sin∠CBE的值;

3若直線AD與直線BE相交于點P,求點P的橫坐標m的取值范圍直接寫出結(jié)果即可).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在△ABC中,點A1,B1,C1分別是BC、AC、AB的中點,A2,B2,C2分別是B1C1,A1C1,A1B1的中點,依此類推.若△ABC的周長為1,則△AnBnCn的周長為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】20181017日是我國第五個扶貧日”,某校學生會干部對學生倡導(dǎo)的扶貧自愿捐款活動進行抽樣調(diào)查,得到一組學生捐款情況的數(shù)據(jù),對學校部分捐款人數(shù)進行調(diào)查和分組統(tǒng)計后,將數(shù)據(jù)整理成如圖所示的統(tǒng)計圖,(圖中信息不完整),已知A.B兩組捐款人數(shù)的比為1:5.

被調(diào)查的捐款人數(shù)分組統(tǒng)計表:

組別

捐款額x/

人數(shù)

A

1≤x<10

a

B

10≤x<20

100

C

20≤x<30

______

D

30≤x<40

______

E

40≤x

______

請結(jié)合以上信息解答下列問題:

(1)a的值和參與調(diào)查的總?cè)藬?shù);

(2)補全被調(diào)查的捐款人數(shù)分組統(tǒng)計圖1”并計算扇形B的圓心角度數(shù);

(3)已知該校有學生2200人,請估計捐款數(shù)不少于30元的學生人數(shù)有多少人?

查看答案和解析>>

同步練習冊答案