【答案】
分析:(1)以線段AB為直徑的圓與線段CD的交點(diǎn),或線段CD的中點(diǎn)就是A,B兩點(diǎn)在CD上的勾股點(diǎn);
(2)當(dāng)矩形ABCD中,AB=3,BC=1時(shí),此時(shí)以線段AB為直徑的圓與線段CD的交點(diǎn)有兩個(gè),加上C、D兩點(diǎn),總共四個(gè)點(diǎn);
(3)①如圖,當(dāng)t=4時(shí),PM=8-4=4,QN=5-4=1,分三種情況:
當(dāng)∠MHN=90°時(shí),根據(jù)已知條件可以證明△PMH∽△QHN,然后利用相似三角形對(duì)應(yīng)線段成比例即可求出PH;
當(dāng)∠H''NM=90°時(shí),設(shè)PH=x,那么H''Q=4-x,根據(jù)勾股定理得到PM
2+PH''
2=QN
2+H''Q
2+MN
2,而MN=
=5,依次即可求出PH'';
當(dāng)∠H'MN=90°時(shí),根據(jù)勾股定理得到H'P
2+PM
2+QH'
2+QN
2=MN
2,而H'Q=PH'+PQ=PH'+4,依次即可求出PH'.
②利用①的結(jié)果可以探究滿足條件的點(diǎn)H的個(gè)數(shù)及相應(yīng)t的取值范圍.
解答:解:(1)如圖,以線段AB為直徑的圓與線段CD的交點(diǎn),或線段CD的中點(diǎn)E就是所勾股點(diǎn);
(2)∵矩形ABCD中,AB=3,BC=1時(shí),
∴以線段AB為直徑的圓與線段CD的交點(diǎn)有兩個(gè),加上C、D兩點(diǎn),總共四個(gè)點(diǎn)4個(gè);
(3)①如圖,當(dāng)t=4時(shí),PM=8-4=4,QN=5-4=1,
當(dāng)∠MHN=90°時(shí),
∵∠MPH=∠HQN=90°,
∴△PMH∽△QHN,
∴PH:QN=PM:HQ,
而PH+HQ=BC=4,
∴PH=2;
當(dāng)∠H''NM=90°時(shí),設(shè)PH=x,那么H''Q=4-x
依題意得PM
2+PH''
2=QN
2+H''Q
2+MN
2,
而MN=
=5,
∴PH=
;
當(dāng)∠H'MN=90°時(shí),QH'
2+QN
2-(H'P
2+PM
2)=MN
2,
而H'Q=PH'+PQ=PH'+4,
∴PH=3.
∴PH=
或PH=2或PH=3.
②當(dāng)0≤t<4時(shí),有2個(gè)勾股點(diǎn);
當(dāng)t=4時(shí),有3個(gè)勾股點(diǎn);
當(dāng)4<t<5時(shí),有4個(gè)勾股點(diǎn);
當(dāng)t=5時(shí),有2個(gè)勾股點(diǎn);
當(dāng)5<t<8時(shí),有4個(gè)勾股點(diǎn);
當(dāng)t=8時(shí),有2個(gè)勾股點(diǎn).
綜上所述,當(dāng)0≤t<4或t=5或t=8時(shí),有2個(gè)勾股點(diǎn);當(dāng)t=4時(shí),有3個(gè)勾股點(diǎn);當(dāng)4<t<5或5<t<8時(shí),有4個(gè)勾股點(diǎn).
點(diǎn)評(píng):此題比較復(fù)雜,難度很大,綜合性比較強(qiáng),是一個(gè)探究性試題,利用了直角三角形的性質(zhì)、勾股定理、相似三角形的性質(zhì)、等多個(gè)知識(shí)點(diǎn),對(duì)于學(xué)生是能力要求很高,解題關(guān)鍵是正確理解題目所給材料,然后充分利用材料解題.