提出問題:如圖①,在四邊形ABCD中,點E、F是AD的n等分點中最中間2個,點G、H是BC的n等分點中最中間2個,(其中n為奇數(shù)),連接EG、FH,那么S四邊形EFHG與S四邊形ABCD之間有什么關(guān)系呢?
探究發(fā)現(xiàn):為了解決這個問題,我們可以先從一些簡單的、特殊的情形入手:
(1)如圖②:四邊形ABCD中,點E、F是AD的3等分點,點G、H是BC的3等分點,連接EG、FH,那么S四邊形EFHG與S四邊形ABCD之間有什么關(guān)系呢?
如圖③,連接EH、BE、DH,
因為△EGH與△EBH高相等,底的比是1:2,
所以S△EGH=S△EBH
因為△EFH與△DEH高相等,底的比是1:2,
所以S△EFH=S△DEH
所以S△EGH+S△EFH=S△EBH +S△DEH
即S四邊形EFHG=S四邊形EBHD
連接BD,
因為△DBE與△ABD高相等,底的比是2:3,
所以S△DBE=S△ABD
因為△BDH與△BCD高相等,底的比是2:3,
所以S△BDH=S△BCD
所以S△DBE +S△BDH=S△ABD+S△BCD =(S△ABD+S△BCD)
=S四邊形ABCD
即S四邊形EBHD=S四邊形ABCD
所以S四邊形EFHG=S四邊形EBHD=×S四邊形ABCD=S四邊形ABCD
(1)如圖④:四邊形ABCD中,點E、F是AD的5等分點中最中間2個,點G、H是BC的5等分點中最中間2個,連接EG、FH,猜想:S四邊形EFHG與S四邊形ABCD之間有什么關(guān)系呢
驗證你的猜想:
(2)問題解決:如圖①,在四邊形ABCD中,點E、F是AD的n等分點中最中間2個,點G、H是BC的n等分點中最中間2個,連接EG、FH,(其中n為奇數(shù))
那么S四邊形EFHG與S四邊形ABCD之間的關(guān)系為: (不必寫出求解過程)
(1)S四邊形EFHG=S四邊形ABCD,證明見解析;
(2)S四邊形EFHG=S四邊形ABCD.
【解析】
試題分析:仿照上面的探究思路,類比求解.
試題解析:(1)四邊形ABCD中,點E、F是AD的5等分點中最中間2個,點G、H是BC的5等分點中最中間2個,連接EG、FH,S四邊形EFHG=S四邊形ABCD,
如圖④:連接EH、BE、DH,
因為△EGH與△EBH高相等,底的比是1:3,
所以S△EGH=S△EBH
因為△EFH與△DEH高相等,底的比是1:3,
所以S△EFH=S△DEH
所以S△EGH+S△EFH=S△EBH +S△DEH
即S四邊形EFHG=S四邊形EBHD
連接BD,
因為△DBE與△ABD高相等,底的比是3:5,
所以S△DBE=S△ABD
因為△BDH與△BCD高相等,底的比是3:5,
所以S△BDH=S△BCD
所以S△DBE +S△BDH=S△ABD+S△BCD = (S△ABD+S△BCD)
=S四邊形ABCD
即S四邊形EBHD=S四邊形ABCD
所以S四邊形EFHG=S四邊形EBHD=×S四邊形ABCD=S四邊形ABCD.
(2)在四邊形ABCD中,點E、F是AD的n等分點中最中間2個,點G、H是BC的n等分點中最中間2個,連接EG、FH,(其中n為奇數(shù))那么S四邊形EFHG=S四邊形ABCD.
考點:三角形的面積.
科目:初中數(shù)學(xué) 來源: 題型:
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
3 |
1 |
6 |
1 |
n |
m |
n |
m |
n |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2012年江蘇省九年級中考模擬數(shù)學(xué)試卷2 題型:解答題
提出問題:如圖,在“兒童節(jié)”前夕,小明和小華分別獲得一塊分布均勻且形狀為等腰梯形和直角梯形的蛋糕(AD∥BC),在蛋糕的邊緣均勻分布著巧克力,小明和小華決定只切一刀將自己的這塊蛋糕平分(要求分得的蛋糕和巧克力質(zhì)量都一樣).
背景介紹:這條分割直線既平分了梯形的面積,又平分了梯形的周長,我們稱這條線為梯形的“等分積周線”.
1.小明很快就想到了一條分割直線,而且用尺規(guī)作圖作出.請你幫小明在圖1中作出這條“等分積周線”,從而平分蛋糕.
2.小華覺得小明的方法很好,所以模仿著在自己的蛋糕(圖2)中畫了一條直線EF分別交AD、BC于點E、F.你覺得小華會成功嗎?如能成功,說出確定的方法;如不能成功,請說明理由
3.通過上面的實踐,你一定有了更深刻的認識.若圖2中AD∥BC,∠A=90°,AD<BC,AB=4 cm,BC =6 cm,CD= 5cm.請你找出梯形ABCD的所有“等分積周線”,并簡要的說明確定的方法.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com