【題目】△ABC在平面直角坐標(biāo)系xOy中的位置如圖所示.(不寫(xiě)解答過(guò)程,直接寫(xiě)出結(jié)果)
(1)若△A1B1C1與△ABC關(guān)于原點(diǎn)O成中心對(duì)稱,則點(diǎn)A1的坐標(biāo)為 ;
(2)將△ABC向右平移4個(gè)單位長(zhǎng)度得到△A2B2C2,則點(diǎn)B2的坐標(biāo)為 ;
(3)將△ABC繞O點(diǎn)順時(shí)針?lè)较蛐D(zhuǎn)90°,則點(diǎn)C走過(guò)的路徑長(zhǎng)為 ;
(4)在x軸上找一點(diǎn)P,使PA+PB的值最小,則點(diǎn)P的坐標(biāo)為 .
【答案】(1)(2,﹣3);(2)(3,1);(3)π;(4)(,0).
【解析】
試題分析:(1)利用關(guān)于原點(diǎn)中心對(duì)稱的點(diǎn)的坐標(biāo)特征求解;
(2)利用點(diǎn)的平移規(guī)律求解;
(3)點(diǎn)C走過(guò)的路徑為以點(diǎn)O為圓心,OC為半徑,圓心角為90度的弧,然后根據(jù)弧長(zhǎng)公式計(jì)算點(diǎn)C走過(guò)的路徑長(zhǎng);
(4)先確定點(diǎn)B關(guān)于x軸的對(duì)稱點(diǎn)B′坐標(biāo)為(﹣1,﹣1),連結(jié)AB′交x軸于P點(diǎn),根據(jù)兩點(diǎn)之間線段最短可確定PA+PB的值最小,接著利用待定系數(shù)法求出直線AB′的解析式,然后求直線AB′與x軸的交點(diǎn)坐標(biāo)就看得到點(diǎn)P的坐標(biāo).
試題解析:(1)若△A1B1C1與△ABC關(guān)于原點(diǎn)O成中心對(duì)稱,則點(diǎn)A1的坐標(biāo)為(2,﹣3);
(2)將△ABC向右平移4個(gè)單位長(zhǎng)度得到△A2B2C2,則點(diǎn)B2的坐標(biāo)為(3,1);
(3)將△ABC繞O點(diǎn)順時(shí)針?lè)较蛐D(zhuǎn)90°,則點(diǎn)C走過(guò)的路徑長(zhǎng)==π;
(4)B點(diǎn)關(guān)于x軸的對(duì)稱點(diǎn)B′坐標(biāo)為(﹣1,﹣1),連結(jié)AB′交x軸于P點(diǎn),則PA+PB=PA+PB′=AB′,此時(shí)PA+PB的值最小,設(shè)直線AB′的解析式為y=kx+b,把A(﹣2,3),B′(﹣1,﹣1)代入得:,得:,所以直線AB′的解析式為y=﹣4x﹣5,當(dāng)y=0時(shí),﹣4x﹣5=0,解得x=,所以此時(shí)點(diǎn)P的坐標(biāo)為(,0).
故答案為:(2,﹣3);(3,1);π;(,0).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,菱形花壇ABCD周長(zhǎng)是80m,∠ABC=60°,沿著菱形的對(duì)角線修建了兩條小路AC和BD,相交于O點(diǎn).
(1)求兩條小路的長(zhǎng)AC、BD.(結(jié)果可用根號(hào)表示)
(2)求花壇的面積.(結(jié)果可用根號(hào)表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列計(jì)算中正確的是( 。
A.2a+3a=5aB.a3a2=a6
C.(a﹣b)2=a2+b2D.(﹣a2)3=﹣a5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某企業(yè)生產(chǎn)并銷(xiāo)售某種產(chǎn)品,假設(shè)銷(xiāo)售量與產(chǎn)量相等,如圖中的折線ABD、線段CD分別表示該產(chǎn)品每千克生產(chǎn)成本(單位:元)、銷(xiāo)售價(jià)(單位:元)與產(chǎn)量x(單位:kg)之間的函數(shù)關(guān)系.
(1)請(qǐng)解釋圖中點(diǎn)D的橫坐標(biāo)、縱坐標(biāo)的實(shí)際意義;
(2)求線段AB所表示的與x之間的函數(shù)表達(dá)式;
(3)當(dāng)該產(chǎn)品產(chǎn)量為多少時(shí),獲得的利潤(rùn)最大?最大利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠一種產(chǎn)品2013年的產(chǎn)量是100萬(wàn)件,計(jì)劃2015年產(chǎn)量達(dá)到121萬(wàn)件,假設(shè)2013年到2015年這種產(chǎn)品產(chǎn)量的年增長(zhǎng)率相同,求2013年到2015年這種產(chǎn)品產(chǎn)量的年增長(zhǎng)率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】三角形的三邊分別為a、b、c,且(a-b)2+(a2+b2-c2)2=0,則三角形的形狀為————————————————。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀:如圖1,點(diǎn)P(x,y)在平面直角坐標(biāo)中,過(guò)點(diǎn)P作PA⊥x軸,垂足為A,將點(diǎn)P繞垂足A順時(shí)針旋轉(zhuǎn)角α(0°<α<90°)得到對(duì)應(yīng)點(diǎn)P′,我們稱點(diǎn)P到點(diǎn)P′的運(yùn)動(dòng)為傾斜α運(yùn)動(dòng).例如:點(diǎn)P(0,2)傾斜30°運(yùn)動(dòng)后的對(duì)應(yīng)點(diǎn)為P′(1,).
圖形E在平面直角坐標(biāo)系中,圖形E上的所有點(diǎn)都作傾斜α運(yùn)動(dòng)后得到圖形E′,這樣的運(yùn)動(dòng)稱為圖形E的傾斜α運(yùn)動(dòng).
理解
(1)點(diǎn)Q(1,2)傾斜60°運(yùn)動(dòng)后的對(duì)應(yīng)點(diǎn)Q′的坐標(biāo)為 ;
(2)如圖2,平行于x軸的線段MN傾斜α運(yùn)動(dòng)后得到對(duì)應(yīng)線段M′N(xiāo)′,M′N(xiāo)′與MN平行且相等嗎?說(shuō)明理由.
應(yīng)用:(1)如圖3,正方形AOBC傾斜α運(yùn)動(dòng)后,其各邊中點(diǎn)E,F(xiàn),G,H的對(duì)應(yīng)點(diǎn)E′,F(xiàn)′,G′,H′構(gòu)成的四邊形是什么特殊四邊形: ;
(2)如圖4,已知點(diǎn)A(0,4),B(2,0),C(3,2),將△ABC傾斜α運(yùn)動(dòng)后能不能得到Rt△A′B′C′,且∠A′C′B′為直角,其中點(diǎn)A′,B′,C′為點(diǎn)A,B,C的對(duì)應(yīng)點(diǎn).請(qǐng)求出cosα的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若點(diǎn)A(a﹣2,3)和點(diǎn)B(﹣1,b+5)關(guān)于y軸對(duì)稱,則點(diǎn)C(a,b)在( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線(m>0)交y軸于點(diǎn)C,CA⊥y軸,交拋物線于點(diǎn)A,點(diǎn)B在拋物線上,且在第一象限內(nèi),BE⊥y軸,交y軸于點(diǎn)E,交AO的延長(zhǎng)線于點(diǎn)D,BE=2AC.
(1)用含m的代數(shù)式表示BE的長(zhǎng).
(2)當(dāng)m=時(shí),判斷點(diǎn)D是否落在拋物線上,并說(shuō)明理由.
(3)若AG∥y軸,交OB于點(diǎn)F,交BD于點(diǎn)G.
①若△DOE與△BGF的面積相等,求m的值.
②連結(jié)AE,交OB于點(diǎn)M,若△AMF與△BGF的面積相等,則m的值是 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com