【題目】如圖,已知1號(hào)、4號(hào)兩個(gè)正方形的面積和為102號(hào)、3號(hào)兩個(gè)正方形的面積和為7,則a,bc三個(gè)方形的面積和為( )

A. 17 B. 27 C. 24 D. 34

【答案】C

【解析】試題分析:由圖可以得到a、b、c三個(gè)正方形的面積與1號(hào)、2號(hào)、3號(hào)、4號(hào)正方形的面積之間的關(guān)系,再根據(jù)1號(hào)、4號(hào)兩個(gè)正方形的面積和為10,2號(hào)、3號(hào)兩個(gè)正方形的面積和為7,可以求得abc三個(gè)正方形的面積的和.

解:如下圖所示,

∵∠ACB+∠DCE=90°∠ACB+∠CAB=90°,

∴∠BAC=∠ECD

△ABC△CED中,

∴△ABC≌△CEDAAS

∴BC=DE,

∵AB2+BC2=AC2,

∴S1+S2=Sa

同理可證,S2+S3=Sb,S3+S4=Sc

∴Sa+Sb+Sc=S1+S2+S2+S3+S3+S4,

∵S1+S4=10,S2+S3=7,

∴Sa+Sb+Sc=S1+S2+S2+S3+S3+S4=S1+S4+S2+S3+S2+S3=10+7+7=24,

故選C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)口袋中有個(gè)黑球和若干個(gè)白球,這些球除顏色外其他都相同.已知從中任意摸取一個(gè)球,摸得黑球的概率為

求口袋中白球的個(gè)數(shù);

如果先隨機(jī)從口袋中摸出一球,不放回,然后再摸出一球,求兩次摸出的球都是白球的概率.用列表法或畫(huà)樹(shù)狀圖法加以說(shuō)明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:點(diǎn)D是等腰直角三角形ABC斜邊BC所在直線上一點(diǎn)(不與點(diǎn)B重合),連接AD.

(1)如圖1,當(dāng)點(diǎn)D在線段BC上時(shí),將線段AD繞點(diǎn)A逆時(shí)針?lè)较蛐D(zhuǎn)90°得到線段AE,連接CE.求證:BD=CE,BDCE;

(2)如圖2,當(dāng)點(diǎn)D在線段BC延長(zhǎng)線上時(shí),將線段AD繞點(diǎn)A逆時(shí)針?lè)较蛐D(zhuǎn)90°得到線段AE,連接CE.請(qǐng)畫(huà)出圖形。上述結(jié)論是否仍然成立,并說(shuō)明理由;

(3)根據(jù)圖2,請(qǐng)直接寫(xiě)出AD、BD、CD三條線段之間的數(shù)量關(guān)系。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知一元二次方程的一根為

關(guān)于的函數(shù)關(guān)系式;

求證:拋物線軸有兩個(gè)交點(diǎn);

設(shè)拋物線軸交于兩點(diǎn)(、不重合),且以為直徑的圓正好經(jīng)過(guò)該拋物線的頂點(diǎn),求,的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知 C 是線段 AB 垂直平分線 m 上一動(dòng)點(diǎn),連接 AC, AC 為邊作等邊△ACD,點(diǎn) D 在直線 AB 的上方,連接 DB 與直線 m 交于點(diǎn) E,連接 BC

(1)如圖 1,點(diǎn) C 在線段 AB

①根據(jù)題意補(bǔ)全圖 1;

②求證:EAC=EDC;

(2)如圖 2,點(diǎn) C 在直線 AB 的上方,0°<∠CAB30°,用等式表示線段 BE、CE、DE 之間的數(shù)量關(guān)系,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,中,,.若有一半徑為的圓分別與相切,則下列何種方法可找到此圓的圓心( )

A. 的角平分線與的交點(diǎn)

B. 的中垂線與中垂線的交點(diǎn)

C. 的角平分線與中垂線的交點(diǎn)

D. 的角平分線與中垂線的交點(diǎn)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD中,ABBCADDC,∠BAD=m°m>90,BCCD上分別找一點(diǎn)MN,當(dāng)△AMN周長(zhǎng)最小時(shí),∠AMN+ANM的度數(shù)是_______(用m來(lái)表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC是邊長(zhǎng)為6cm的等邊三角形,動(dòng)點(diǎn)PQ同時(shí)從A,B兩點(diǎn)出發(fā),分別在AB,BC邊上勻速移動(dòng),它們的速度分別為=2cm/s,=1cm/s,當(dāng)點(diǎn)P到達(dá)點(diǎn)B時(shí),P,Q兩點(diǎn)同時(shí)停止運(yùn)動(dòng),設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒.

1)用含t的代數(shù)式表示BP=______BQ=_______

2)當(dāng)t為何值時(shí),BPQ為等邊三角形?

3)當(dāng)t為何值時(shí),BPQ為直角三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知△ABC中,AB=AC=10cm,BC=8cm,∠B=C,點(diǎn)DAB的中點(diǎn).

(1)如果點(diǎn)P在線段BC上以3cm/s的速度由B點(diǎn)向C點(diǎn)運(yùn)動(dòng),同時(shí),點(diǎn)Q在線段CA上由C點(diǎn)向A點(diǎn)運(yùn)動(dòng).

①若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度相等,經(jīng)過(guò)1s后,△BPD與△CQP是否全等,請(qǐng)說(shuō)明理由;

②若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度不相等,當(dāng)點(diǎn)Q的運(yùn)動(dòng)速度為時(shí)________cm/s,在運(yùn)動(dòng)過(guò)程中能夠使△BPD與△CQP全等.(直接填答案)

(2)若點(diǎn)Q以②中的運(yùn)動(dòng)速度從點(diǎn)C出發(fā),點(diǎn)P以原來(lái)的運(yùn)動(dòng)速度從點(diǎn)B同時(shí)出發(fā),都逆時(shí)針沿△ABC三邊運(yùn)動(dòng),求經(jīng)過(guò)多長(zhǎng)時(shí)間點(diǎn)P與點(diǎn)Q第一次在△ABC的哪條邊上相遇?

查看答案和解析>>

同步練習(xí)冊(cè)答案