如圖,在△ABC中,AB=2,AC=BC= 5 .
(1)以AB所在的直線為x軸,AB的垂直平分線為y軸,建立直角坐標系如圖,請你分別寫出A、B、C三點的坐標;
(2)求過A、B、C三點且以C為頂點的拋物線的解析式;
(3)若D為拋物線上的一動點,當D點坐標為何值時,S△ABD=S△ABC;
(4)如果將(2)中的拋物線向右平移,且與x軸交于點A′B′,與y軸交于點C′,當平移多少個單位時,點C′同時在以A′B′為直徑的圓上(解答過程如果有需要時,請參看閱讀材料).
附:閱讀材料
一元二次方程常用的解法有配方法、公式法和因式分解法,對于一些特殊方程可以通過換元法轉(zhuǎn)化為一元二次方程求解.如解方程:y4-4y2+3=0.
解:令y2=x(x≥0),則原方程變?yōu)閤2-4x+3=0,解得x1=1,x2=3.
當x1=1時,即y2=1,∴y1=1,y2=-1.
當x2=3,即y2=3,∴y3= 3 ,y4=- 3 .
所以,原方程的解是y1=1,y2=-1,y3= 3 ,y4=- 3 .
再如 ,可設(shè) ,用同樣的方法也可求解.