相關習題
 0  125523  125531  125537  125541  125547  125549  125553  125559  125561  125567  125573  125577  125579  125583  125589  125591  125597  125601  125603  125607  125609  125613  125615  125617  125618  125619  125621  125622  125623  125625  125627  125631  125633  125637  125639  125643  125649  125651  125657  125661  125663  125667  125673  125679  125681  125687  125691  125693  125699  125703  125709  125717  366461 

科目: 來源:第2章《二次函數(shù)》?碱}集(21):2.7 最大面積是多少(解析版) 題型:解答題

我們把一個半圓與拋物線的一部分合成的封閉圖形稱為“蛋圓”,如果一條直線與“蛋圓”只有一個交點,那么這條直線叫做“蛋圓”的切線.如圖所示,點A、B、C、D分別是“蛋圓”與坐標軸的交點,已知點D的坐標為(0,-3),AB為半圓的直徑,半圓圓心M的坐標為(1,0),半圓半徑為2.
(1)請你求出“蛋圓”拋物線部分的解析式,并寫出自變量的取值范圍;
(2)你能求出經(jīng)過點C的“蛋圓”切線的解析式嗎?試試看;
(3)開動腦筋想一想,相信你能求出經(jīng)過點D的“蛋圓”切線的解析式.

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》?碱}集(21):2.7 最大面積是多少(解析版) 題型:解答題

如圖1所示,直角梯形OABC的頂點A、C分別在y軸正半軸與x軸負半軸上.過點B、C作直線l.將直線l平移,平移后的直線l與x軸交于點D,與y軸交于點E.
(1)將直線l向右平移,設平移距離CD為t(t≥0),直角梯形OABC被直線l掃過的面積(圖中陰影部分)為s,s關于t的函數(shù)圖象如圖2所示,OM為線段,MN為拋物線的一部分,NQ為射線,N點橫坐標為4.
①求梯形上底AB的長及直角梯形OABC的面積,
②當2<t<4時,求S關于t的函數(shù)解析式;
(2)在第(1)題的條件下,當直線l向左或向右平移時(包括l與直線BC重合),在直線AB上是否存在點P,使△PDE為等腰直角三角形?若存在,請直接寫出所有滿足條件的點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》?碱}集(21):2.7 最大面積是多少(解析版) 題型:解答題

已知:如圖,拋物線y=-x2+bx+c與x軸、y軸分別相交于點A(-1,0)、B(0,3)兩點,其頂點為D.
(1)求該拋物線的解析式;
(2)若該拋物線與x軸的另一個交點為E.求四邊形ABDE的面積;
(3)△AOB與△BDE是否相似?如果相似,請予以證明;如果不相似,請說明理由.
(注:拋物線y=ax2+bx+c(a≠0)的頂點坐標為

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》?碱}集(25):2.7 最大面積是多少(解析版) 題型:解答題

已知:拋物線y=-x2+mx+2m2(m>0)與x軸交于A、B兩點,點A在點B的左邊,C是拋物線上一個動點(點C與點A、B不重合),D是OC的中點,連接BD并延長,交AC于點E.
(1)用含m的代數(shù)式表示點A、B的坐標;
(2)求的值;
(3)當C、A兩點到y(tǒng)軸的距離相等,且S△CED=時,求拋物線和直線BE的解析式.

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》常考題集(25):2.7 最大面積是多少(解析版) 題型:解答題

圖1是邊長分別為4和3的兩個等邊三角形紙片ABC和C′D′E′疊放在一起(C與C′重合).
(1)操作:固定△ABC,將△C′D′E′繞點C順時針旋轉(zhuǎn)30°得到△CDE,連接AD、BE,CE的延長線交AB于F(圖2);
探究:在圖2中,線段BE與AD之間有怎樣的大小關系?試證明你的結論.
(2)操作:將圖2中的△CDE,在線段CF上沿著CF方向以每秒1個單位的速度平移,平移后的△CDE設為△PQR(圖3);
探究:設△PQR移動的時間為x秒,△PQR與△ABC重疊部分的面積為y,求y與x之間的函數(shù)解析式,并寫出函數(shù)自變量x的取值范圍.
(3)操作:圖1中△C′D′E′固定,將△ABC移動,使頂點C落在C′E′的中點,邊BC交D′E′于點M,邊AC交D′C′于點N,設∠AC C′=α(30°<α<90°(圖4);
探究:在圖4中,線段C′N•E′M的值是否隨α的變化而變化?如果沒有變化,請你求出C′N•E′M的值,如果有變化,請你說明理由.

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》?碱}集(25):2.7 最大面積是多少(解析版) 題型:解答題

矩形OABC在直角坐標系中的位置如圖所示,A、C兩點的坐標分別為A(6,0)、C(0,3),直線y=x與BC邊相交于點D.
(1)求點D的坐標;
(2)若拋物線y=ax2+bx經(jīng)過D、A兩點,試確定此拋物線的表達式;
(3)P為x軸上方(2)中拋物線上一點,求△POA面積的最大值;
(4)設(2)中拋物線的對稱軸與直線OD交于點M,點Q為對稱軸上一動點,以Q、O、M為頂點的三角形與△OCD相似,求符合條件的Q點的坐標.

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》?碱}集(25):2.7 最大面積是多少(解析版) 題型:解答題

如圖,在平行四邊形ABCD中,AD=4cm,∠A=60°,BD⊥AD.一動點P從A出發(fā),以每秒1cm的速度沿A→B→C的路線勻速運動,過點P作直線PM,使PM⊥AD.
(1)當點P運動2秒時,設直線PM與AD相交于點E,求△APE的面積;
(2)當點P運動2秒時,另一動點Q也從A出發(fā)沿A→B→C的路線運動,且在AB上以每秒1cm的速度勻速運動,在BC上以每秒2cm的速度勻速運動.過Q作直線QN,使QN∥PM.設點Q運動的時間為t秒(0≤t≤10),直線PM與QN截平行四邊形ABCD所得圖形的面積為Scm2
①求S關于t的函數(shù)關系式;
②(附加題)求S的最大值.

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》?碱}集(25):2.7 最大面積是多少(解析版) 題型:解答題

已知拋物線y=x2+(2n-1)x+n2-1(n為常數(shù)).
(1)當該拋物線經(jīng)過坐標原點,并且頂點在第四象限時,求出它所對應的函數(shù)關系式;
(2)設A是(1)所確定的拋物線上位于x軸下方、且在對稱軸左側的一個動點,過A作x軸的平行線,交拋物線于另一點D,再作AB⊥x軸于B,DC⊥x軸于C.
①當BC=1時,求矩形ABCD的周長;
②試問矩形ABCD的周長是否存在最大值?如果存在,請求出這個最大值,并指出此時A點的坐標.如果不存在,請說明理由.

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》?碱}集(25):2.7 最大面積是多少(解析版) 題型:解答題

已知拋物線y=-(x-m)2+1與x軸的交點為A、B(B在A的右邊),與y軸的交點為C.
(1)寫出m=1時與拋物線有關的三個正確結論;
(2)當點B在原點的右邊,點C在原點的下方時,是否存在△BOC為等腰三角形的情形?若存在,求出m的值;若不存在,請說明理由;
(3)請你提出一個對任意的m值都能成立的正確命題(說明:根據(jù)提出問題的水平層次,得分略有差異).

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》?碱}集(25):2.7 最大面積是多少(解析版) 題型:解答題

已知:拋物線y=x2-2x-m(m>0)與y軸交于點C,C點關于拋物線對稱軸的對稱點為C′點.
(1)求C點,C′點的坐標(可用含m的代數(shù)式表示);
(2)如果點Q在拋物線的對稱軸上,點P在拋物線上,以點C,C′,P,Q為頂點的四邊形是平行四邊形,求Q點和P點的坐標(可用含m的代數(shù)式表示);
(3)在(2)的條件下,求出平行四邊形的周長.

查看答案和解析>>

同步練習冊答案