相關(guān)習(xí)題
 0  126344  126352  126358  126362  126368  126370  126374  126380  126382  126388  126394  126398  126400  126404  126410  126412  126418  126422  126424  126428  126430  126434  126436  126438  126439  126440  126442  126443  126444  126446  126448  126452  126454  126458  126460  126464  126470  126472  126478  126482  126484  126488  126494  126500  126502  126508  126512  126514  126520  126524  126530  126538  366461 

科目: 來源:第35章《圓(二)》中考題集(18):35.3 探索切線的性質(zhì)(解析版) 題型:解答題

如圖,A,B,C,D四點在⊙O上,AD,BC的延長線相交于點E,直徑AD=10,OE=13,且∠EDC=∠ABC.
(1)求證:;
(2)計算CE•BE的值;
(3)探究:BE的取值范圍.

查看答案和解析>>

科目: 來源:第35章《圓(二)》中考題集(18):35.3 探索切線的性質(zhì)(解析版) 題型:解答題

在一個工件上有一梯形塊ABCD,其中AD∥BC,∠BCD=90°,面積為21 cm2,周長為20 cm,若工人師傅要在其上加工一個以CD為直徑的半圓槽,且圓槽剛好和AB邊相切(如圖所示),求此圓的半徑長.

查看答案和解析>>

科目: 來源:第35章《圓(二)》中考題集(18):35.3 探索切線的性質(zhì)(解析版) 題型:解答題

如圖,AB是⊙O的直徑,CB、CE分別切⊙O于點B、D,CE與BA的延長線交于點E,連接OC、OD.
(1)△OBC與△ODC是否全等?______(填“是”或“否”);
(2)已知DE=a,AE=b,BC=c,請你思考后,選用以上適當(dāng)?shù)臄?shù),設(shè)計出計算⊙O半徑r的一種方案:
①你選用的已知數(shù)是______;
②寫出求解過程.(結(jié)果用字母表示)

查看答案和解析>>

科目: 來源:第35章《圓(二)》中考題集(18):35.3 探索切線的性質(zhì)(解析版) 題型:解答題

如圖,已知⊙O的割線PAB交⊙O于A、B兩點,PO與⊙O交于點C,且PA=AB=6cm,PO=12cm,
(Ⅰ)求⊙O的半徑;
(Ⅱ)求△PBO的面積.(結(jié)果可帶根號)

查看答案和解析>>

科目: 來源:第35章《圓(二)》中考題集(18):35.3 探索切線的性質(zhì)(解析版) 題型:解答題

閱讀下面的材料:
如圖(1),在以AB為直徑的半圓O內(nèi)有一點P,AP、BP的延長線分別交半圓O于點C、D.
求證:AP•AC+BP•BD=AB2
證明:連接AD、BC,過P作PM⊥AB,則∠ADB=∠AMP=90°,
∴點D、M在以AP為直徑的圓上;同理:M、C在以BP為直徑的圓上.
由割線定理得:AP•AC=AM•AB,BP•BD=BM•BA,
所以,AP•AC+BP•BD=AM•AB+BM•AB=AB•(AM+BM)=AB2
當(dāng)點P在半圓周上時,也有AP•AC+BP•BD=AP2+BP2=AB2成立,那么:
(1)如圖(2)當(dāng)點P在半圓周外時,結(jié)論AP•AC+BP•BD=AB2是否成立?為什么?
(2)如圖(3)當(dāng)點P在切線BE外側(cè)時,你能得到什么結(jié)論?將你得到的結(jié)論寫出來.

查看答案和解析>>

科目: 來源:第35章《圓(二)》中考題集(18):35.3 探索切線的性質(zhì)(解析版) 題型:解答題

如圖,從⊙O外一點A作⊙O的切線AB、AC,切點分別為B、C,且⊙O直徑BD=6,連接CD、AO.
(1)求證:CD∥AO;
(2)設(shè)CD=x,AO=y,求y與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(3)若AO+CD=11,求AB的長.

查看答案和解析>>

科目: 來源:第35章《圓(二)》中考題集(18):35.3 探索切線的性質(zhì)(解析版) 題型:解答題

如圖,已知點O為Rt△ABC斜邊AB上一點,以O(shè)為圓心,OA為半徑的圓與BC相切于點D,與AB相交于點E.
(1)試判斷AD是否平分∠BAC?并說明理由.
(2)若BD=3BE,CD=3,求⊙O的半徑.

查看答案和解析>>

科目: 來源:第35章《圓(二)》中考題集(18):35.3 探索切線的性質(zhì)(解析版) 題型:解答題

如圖1,平行四邊形ABCD的對角線AC,BD交于點P,E為BC的中點,過E點的圓O與BD相切于點P,圓O與直線AC,BC分別交于點F,G.
(1)求證:△PCD∽△EPF;
(2)如果AB=AD,AC=6,BD=8(如圖2).求圓O的直徑.

查看答案和解析>>

科目: 來源:第35章《圓(二)》中考題集(18):35.3 探索切線的性質(zhì)(解析版) 題型:解答題

已知:如圖,圓O1與圓O2外切于點P,經(jīng)過圓O1上一點A作圓O1的切線交圓O2于B、C兩點,直線AP交圓O2于點D,連接DC、PC.
(1)求證:DC2=DP•DA;
(2)若圓O1與圓O2的半徑之比為1:2,連接BD,BD=4,PD=12,求AB的長.

查看答案和解析>>

科目: 來源:第35章《圓(二)》中考題集(18):35.3 探索切線的性質(zhì)(解析版) 題型:解答題

如圖,已知AB是⊙O的直徑,直線l與⊙O相切于點C且,弦CD交AB于E,BF⊥l,垂足為F,BF交⊙O于G.
(1)求證:CE2=FG•FB;
(2)若tan∠CBF=,AE=3,求⊙O的直徑.

查看答案和解析>>

同步練習(xí)冊答案