相關(guān)習(xí)題
 0  126408  126416  126422  126426  126432  126434  126438  126444  126446  126452  126458  126462  126464  126468  126474  126476  126482  126486  126488  126492  126494  126498  126500  126502  126503  126504  126506  126507  126508  126510  126512  126516  126518  126522  126524  126528  126534  126536  126542  126546  126548  126552  126558  126564  126566  126572  126576  126578  126584  126588  126594  126602  366461 

科目: 來源:第34章《二次函數(shù)》?碱}集(20):34.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

某村為增加蔬菜的種植面積,一年中修建了一些蔬菜大棚.平均修建每公頃大棚要用的支架、塑料膜等材料的費(fèi)用為27 000元,此外還要購置噴灌設(shè)備,這項(xiàng)費(fèi)用(元)與大棚面積(公頃)的平方成正比,比例系數(shù)為9000.每公頃大棚的年平均經(jīng)濟(jì)收益為75 000元,這個村一年中由于修建蔬菜大棚而增加的收益(扣除修建費(fèi)用后)為60 000元.
(1)一年中這個村修建了多少公頃蔬菜大棚?
(2)若要使收益達(dá)到最大,請問應(yīng)修建多少公頃大棚?并說明理由.

查看答案和解析>>

科目: 來源:第34章《二次函數(shù)》常考題集(20):34.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

某商人如果將進(jìn)貨價為8元的商品按每件10元出售,每天可銷售100件,現(xiàn)采用提高售出價,減少進(jìn)貨量的辦法增加利潤,已知這種商品每漲價1元其銷售量就要減少10件,問他將售出價(x)定為多少元時,才能使每天所賺的利潤(y)最大并求出最大利潤.

查看答案和解析>>

科目: 來源:第34章《二次函數(shù)》常考題集(20):34.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

某企業(yè)投資100萬元引進(jìn)一條產(chǎn)品加工生產(chǎn)線,若不計維修、保養(yǎng)費(fèi)用,預(yù)計投產(chǎn)后每年可創(chuàng)利33萬.該生產(chǎn)線投產(chǎn)后,從第1年到第x年的維修、保養(yǎng)費(fèi)用累計為y(萬元),且y=ax2+bx,若第1年的維修、保養(yǎng)費(fèi)用為2萬元,第2年為4萬元.
(1)求y的解析式;
(2)投產(chǎn)后,這個企業(yè)在第幾年就能收回投資?

查看答案和解析>>

科目: 來源:第34章《二次函數(shù)》?碱}集(20):34.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

如圖,矩形的長是4cm,寬是3cm,如果將長和寬都增加xcm,那么面積增加ycm2
(1)求y與x的函數(shù)表達(dá)式;
(2)求當(dāng)邊長增加多少時,面積增加8cm2

查看答案和解析>>

科目: 來源:第34章《二次函數(shù)》?碱}集(20):34.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

某商店準(zhǔn)備進(jìn)一批季節(jié)性小家電,每個進(jìn)價為40元,經(jīng)市場預(yù)測,銷售定價為50元,可售出400個;定價每增加1元,銷售量將減少10個.設(shè)每個定價增加x元.
(1)寫出售出一個可獲得的利潤是多少元(用含x的代數(shù)式表示)?
(2)商店若準(zhǔn)備獲得利潤6000元,并且使進(jìn)貨量較少,則每個定價為多少元?應(yīng)進(jìn)貨多少個?
(3)商店若要獲得最大利潤,則每個應(yīng)定價多少元?獲得的最大利潤是多少?

查看答案和解析>>

科目: 來源:第34章《二次函數(shù)》?碱}集(20):34.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

如圖這是某次運(yùn)動會開幕式上點(diǎn)燃火炬時在平面直角坐標(biāo)系中的示意圖,在地面有O、A兩個觀測點(diǎn),分別測得目標(biāo)點(diǎn)火炬C的仰視角為α、β,OA=2米,tanα=,tanβ=,位于點(diǎn)O正上方2米處的D點(diǎn)發(fā)射裝置,可以向目標(biāo)C發(fā)射一個火球點(diǎn)燃火炬,該火球運(yùn)行的軌跡為一拋物線,當(dāng)火球運(yùn)行到距地面最大高度20米時,相應(yīng)的水平距離為12米(圖中E點(diǎn)).
(1)求火球運(yùn)行軌跡的拋物線對應(yīng)的函數(shù)解析式;
(2)說明按(1)中軌跡運(yùn)行的火球能否點(diǎn)燃目標(biāo)C.

查看答案和解析>>

科目: 來源:第34章《二次函數(shù)》?碱}集(20):34.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

心理學(xué)家研究發(fā)現(xiàn),一般情況下,學(xué)生的注意力隨著老師講課時間的變化而變化,講課開始時,學(xué)生的注意力逐步增強(qiáng),中間有一段時間學(xué)生的注意力保持較為理想的狀態(tài),隨后學(xué)生的注意力開始分散.經(jīng)過實(shí)驗(yàn)分析可知,學(xué)生的注意力y隨時間t(分鐘)的變化規(guī)律有如下關(guān)系式:y=(y值越大表示接受能力越強(qiáng))
(1)講課開始后第5分鐘時與講課開始后第25分鐘時比較,何時學(xué)生的注意力更集中;
(2)講課開始后多少分鐘,學(xué)生的注意力最集中能持續(xù)多少分鐘;
(3)一道數(shù)學(xué)難題,需要講解24分鐘,為了效果較好,要求學(xué)生的注意力最低達(dá)到180,那么經(jīng)過適當(dāng)安排,老師能否在學(xué)生注意力達(dá)到所需的狀態(tài)下講解完這道題目?

查看答案和解析>>

科目: 來源:第34章《二次函數(shù)》?碱}集(20):34.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

施工隊(duì)要修建一個橫斷面為拋物線的公路隧道,其高度為6米,寬度OM為12米.現(xiàn)以O(shè)點(diǎn)為原點(diǎn),OM所在直線為x軸建立直角坐標(biāo)系(如圖1所示).
(1)求出這條拋物線的函數(shù)解析式,并寫出自變量x的取值范圍;
(2)隧道下的公路是雙向行車道(正中間是一條寬1米的隔離帶),其中的一條行車道能否行駛寬2.5米、高5米的特種車輛?請通過計算說明;
(3)施工隊(duì)計劃在隧道門口搭建一個矩形“腳手架”CDAB,使A、D點(diǎn)在拋物線上.B、C點(diǎn)在地面OM線上(如圖2所示).為了籌備材料,需求出“腳手架”三根木桿AB、AD、DC的長度之和的最大值是多少,請你幫施工隊(duì)計算一下.

查看答案和解析>>

科目: 來源:第34章《二次函數(shù)》?碱}集(20):34.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

在某市開展的環(huán)境創(chuàng)優(yōu)活動中,某居民小區(qū)要在一塊靠墻(墻長15米)的空地上修建一個矩形花園ABCD,花園的一邊靠墻,另三邊用總長為40m的柵欄圍成,若設(shè)花園靠墻的一邊長為x(m),花園的面積為y(m2).
(1)求y與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(2)滿足條件的花園面積能達(dá)到200m2嗎?若能,求出此時x的值,若不能,說明理由;
(3)根據(jù)(1)中求得的函數(shù)關(guān)系式,判斷當(dāng)x取何值時,花園的面積最大,最大面積是多少?

查看答案和解析>>

科目: 來源:第34章《二次函數(shù)》?碱}集(20):34.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

2009年度東風(fēng)公司神鷹汽車改裝廠開發(fā)出A型農(nóng)用車,其成本價為每輛2萬元,出廠價為每輛2.4萬元,年銷售價為10000輛,2010年為了支援西部大開發(fā)的生態(tài)農(nóng)業(yè)建設(shè),該廠抓住機(jī)遇,發(fā)展企業(yè),全面提高A型農(nóng)用車的科技含量,每輛農(nóng)用車的成本價增長率為x,出廠價增長率為0.75x,預(yù)測年銷售增長率為0.6x.(年利潤=(出廠價-成本價)×年銷售量)
(1)求2010年度該廠銷售A型農(nóng)用車的年利潤y(萬元)與x之間的函數(shù)關(guān)系.
(2)該廠要是2010年度銷售A型農(nóng)用車的年利潤達(dá)到4028萬元,該年度A型農(nóng)用車的年銷售量應(yīng)該是多少輛?

查看答案和解析>>

同步練習(xí)冊答案