相關(guān)習(xí)題
 0  126511  126519  126525  126529  126535  126537  126541  126547  126549  126555  126561  126565  126567  126571  126577  126579  126585  126589  126591  126595  126597  126601  126603  126605  126606  126607  126609  126610  126611  126613  126615  126619  126621  126625  126627  126631  126637  126639  126645  126649  126651  126655  126661  126667  126669  126675  126679  126681  126687  126691  126697  126705  366461 

科目: 來源:第34章《二次函數(shù)》中考題集(25):34.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

認(rèn)真審一審,培養(yǎng)你的解決實際問題能力:
某工廠生產(chǎn)的某種產(chǎn)品按質(zhì)量分為10個檔次,第一檔次的產(chǎn)品一天能生產(chǎn)76件,每件利潤10元,每提高一個檔次,每件利潤加2元,但一天生產(chǎn)量減少4件.
(1)若生產(chǎn)檔次的產(chǎn)品一天總利潤為y元(其中x為正整數(shù),且1≤x≤10),求出y關(guān)于x的函數(shù)關(guān)系式;
(2)若生產(chǎn)第x檔次的產(chǎn)品一天的總利潤為1080元,求該產(chǎn)品的質(zhì)量檔次.

查看答案和解析>>

科目: 來源:第34章《二次函數(shù)》中考題集(25):34.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

某隧道橫斷面由拋物線與矩形的三邊組成,尺寸如圖所示.
(1)以隧道橫斷面拋物線的頂點為原點,以拋物線的對稱軸為y軸,建立直角坐標(biāo)系,求該拋物線對應(yīng)的函數(shù)關(guān)系式;
(2)某卡車空車時能通過此隧道,現(xiàn)裝載一集裝箱箱寬3m,車與箱共高4.5m,此車能否通過隧道?并說明理由.

查看答案和解析>>

科目: 來源:第34章《二次函數(shù)》中考題集(25):34.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

某電腦公司開發(fā)出一種軟件,從研發(fā)到年初上市后,經(jīng)歷了從虧損到盈利的過程,如圖所示的二次函數(shù)圖象(部分)刻畫了該公司年初以來累計利潤y(萬元)與銷售時間x(月)之間的函數(shù)關(guān)系(即x個月累計利潤總和y與x之間的關(guān)系),根據(jù)圖象提供的信息解答下列問題:
(1)該種軟件上市第幾個月后開始盈利;
(2)求累計利潤總和y(萬元)與時間x(月)之間的函數(shù)關(guān)系式;
(3)截止到幾月末公司累計利潤達(dá)到30萬元;
(4)求出該函數(shù)圖象與y軸的交點坐標(biāo),并說明該點的實際意義.

查看答案和解析>>

科目: 來源:第34章《二次函數(shù)》中考題集(25):34.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

我市某外資企業(yè)生產(chǎn)的一批產(chǎn)品上市后30天內(nèi)全部售完,該企業(yè)對這批產(chǎn)品上市后每天的銷售情況進(jìn)行了跟蹤調(diào)查.其中,國內(nèi)市場的日銷售量y1(萬件)與時間t(t為整數(shù),單位:天)的部分對應(yīng)值如下表所示.而國外市場的日銷售量y2(萬件)與時間t(t為整數(shù),單位:天)的關(guān)系如圖所示.
(1)請你從所學(xué)過的一次函數(shù)、二次函數(shù)和反比例函數(shù)中確定哪種函數(shù)能表示y1與t的變化規(guī)律,寫出y1與t的函數(shù)關(guān)系式及自變量t的取值范圍;
(2)分別探求該產(chǎn)品在國外市場上市20天前(不含第20天)與20天后(含第20天)的日銷售量y2與時間t所符合的函數(shù)關(guān)系式,并寫出相應(yīng)自變量t的取值范圍;
(3)設(shè)國內(nèi)、外市場的日銷售總量為y萬件,寫出y與時間t的函數(shù)關(guān)系式,并判斷上市第幾天國內(nèi)、外市場的日銷售總量y最大,并求出此時的最大值.

查看答案和解析>>

科目: 來源:第34章《二次函數(shù)》中考題集(25):34.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

某種爆竹點燃后,其上升高度h(米)和時間t(秒)符合關(guān)系式h=vt+gt2(0<t≤2),其中重力加速度g以10米/秒2計算.這種爆竹點燃后以v=20米/秒的初速度上升.(上升過程中,重力加速度g為-10米/秒2;下降過程中,重力加速度g為10米/秒2
(1)這種爆竹在地面上點燃后,經(jīng)過多少時間離地15米?
(2)在爆竹點燃后的1.5秒至1.8秒這段時間內(nèi),判斷爆竹是上升,或是下降,并說明理由.

查看答案和解析>>

科目: 來源:第34章《二次函數(shù)》中考題集(25):34.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

蔬菜基地種植某種蔬菜,由市場行情分析知,1月份至6月份這種蔬菜的上市時間x(月份)與市場售價p(元/千克)的關(guān)系如下表:
上市時間x(月份)123456
市場銷售p(元/千克)10.597.564.53
這種蔬菜每千克的種植成本y(元/千克)與上市時間x(月份)滿足一個函數(shù)關(guān)系,這個函數(shù)的圖象是拋物線的一段(如圖).
(1)寫出上表中表示的市場售價p(元/千克)關(guān)于上市時間x(月份)的函數(shù)關(guān)系式;
(2)若圖中拋物線過A,B,C點,寫出拋物線對應(yīng)的函數(shù)關(guān)系式;
(3)由以上信息分析,哪個月上市出售這種蔬菜每千克的收益最大?最大值為多少?(收益=市場售價-種植成本)

查看答案和解析>>

科目: 來源:第34章《二次函數(shù)》中考題集(25):34.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

天羽服裝廠生產(chǎn)M、N型兩種服裝,受資金及規(guī)模限制,每天最多只能用A種面料68米和B種面料62米生產(chǎn)M、N型兩種服裝共80套.已知M、N型服裝每套所需面料和成本如下表,設(shè)每天生產(chǎn)M型服裝x套.
AB成本
M型1.1m0.4m100元
N型0.6m0.9m80元
(1)若要每天成本不高于7200元,則該廠每天生產(chǎn)M型服裝最多多少套,最少多少套?
(2)經(jīng)市場調(diào)查,生產(chǎn)的M、N型服裝有兩種銷售方案(假設(shè)每天生產(chǎn)的服裝都能全部售出).
方案Ⅰ:兩種型號服裝都在本市銷售,M型180元/件、N型120元/件;
方案Ⅱ:N型服裝在本市銷售,120元/件,M型服裝批發(fā)給H市服裝商,其每件的批發(fā)價y(元)與批量x(件)之間的關(guān)系如圖所示.
如果你是廠長,應(yīng)采用哪種銷售方案可使每天獲利最大,最大利潤是多少?并確定相應(yīng)的生產(chǎn)方案.

查看答案和解析>>

科目: 來源:第34章《二次函數(shù)》中考題集(25):34.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

某商業(yè)集團(tuán)新建一小車停車場,經(jīng)測算,此停車場每天需固定支出的費用(設(shè)施維修費、車輛管理人員工資等)為800元.為制定合理的收費標(biāo)準(zhǔn),該集團(tuán)對一段時間每天小車停放輛次與每輛次小車的收費情況進(jìn)行了調(diào)查,發(fā)現(xiàn)每輛次小車的停車費不超過5元時,每天來此處停放的小車可達(dá)1440輛次;若停車費超過5元,則每超過1元,每天來此處停放的小車就減少120輛次.為便于結(jié)算,規(guī)定每輛次小車的停車費x(元)只取整數(shù),用y(元)表示此停車場的日凈收入,且要求日凈收入不低于2512元.(日凈收入=每天共收取的停車費-每天的固定支出)
(1)當(dāng)x≤5時,寫出y與x之間的關(guān)系式,并說明每輛小車的停車費最少不低于多少元;
(2)當(dāng)x>5時,寫出y與x之間的函數(shù)關(guān)系式(不必寫出x的取值范圍);
(3)該集團(tuán)要求此停車場既要吸引客戶,使每天小車停放的輛次較多,又要有較大的日凈收入.按此要求,每輛次小車的停車費應(yīng)定為多少元?此時日凈收入是多少?

查看答案和解析>>

科目: 來源:第34章《二次函數(shù)》中考題集(25):34.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

某農(nóng)戶計劃利用現(xiàn)有的一面墻再修四面墻,建造如圖所示的長方體水池,培育不同品種的魚苗.他已備足可以修高為1.5m、長18m的墻的材料準(zhǔn)備施工,設(shè)圖中與現(xiàn)有一面墻垂直的三面墻的長度都為xm,即AD=EF=BC=xm.(不考慮墻的厚度)
(1)若想水池的總?cè)莘e為36m3,x應(yīng)等于多少?
(2)求水池的總?cè)莘eV與x的函數(shù)關(guān)系式,并直接寫出x的取值范圍;
(3)若想使水池的總?cè)莘eV最大,x應(yīng)為多少?最大容積是多少?

查看答案和解析>>

同步練習(xí)冊答案