相關(guān)習(xí)題
 0  126963  126971  126977  126981  126987  126989  126993  126999  127001  127007  127013  127017  127019  127023  127029  127031  127037  127041  127043  127047  127049  127053  127055  127057  127058  127059  127061  127062  127063  127065  127067  127071  127073  127077  127079  127083  127089  127091  127097  127101  127103  127107  127113  127119  127121  127127  127131  127133  127139  127143  127149  127157  366461 

科目: 來源:第2章《二次函數(shù)》常考題集(19):2.3 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

某水果批發(fā)商銷售每箱進(jìn)價(jià)為40元的蘋果,物價(jià)部門規(guī)定每箱售價(jià)不得高于55元,市場(chǎng)調(diào)查發(fā)現(xiàn),若每箱以50元的價(jià)格調(diào)查,平均每天銷售90箱,價(jià)格每提高1元,平均每天少銷售3箱.
(1)求平均每天銷售量y(箱)與銷售價(jià)x(元/箱)之間的函數(shù)關(guān)系式.
(2)求該批發(fā)商平均每天的銷售利潤(rùn)w(元)與銷售價(jià)x(元/箱)之間的函數(shù)關(guān)系式.
(3)當(dāng)每箱蘋果的銷售價(jià)為多少元時(shí),可以獲得最大利潤(rùn)?最大利潤(rùn)是多少?

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》常考題集(19):2.3 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

為保證交通安全,汽車駕駛員必須知道汽車剎車后的停止距離(開始剎車到車輛停止車輛行駛的距離)與汽車行駛速度(開始剎車時(shí)的速度)的關(guān)系,以便及時(shí)剎車.
下表是某款車在平坦道路上路況良好時(shí)剎車后的停止距離與汽車行駛速度的對(duì)應(yīng)值表:
行駛速度(千米/時(shí))406080
停止距離(米)163048
(1)設(shè)汽車剎車后的停止距離y(米)是關(guān)于汽車行駛速度x(千米/時(shí))的函數(shù),給出以下三個(gè)函數(shù):①y=ax+b;②y=(k≠0);③y=ax2+bx,請(qǐng)選擇恰當(dāng)?shù)暮瘮?shù)來描述停止距離y(米)與汽車行駛速度x(千米/時(shí))的關(guān)系,說明選擇理由,并求出符合要求的函數(shù)的解析式;
(2)根據(jù)你所選擇的函數(shù)解析式,若汽車剎車后的停止距離為70米,求汽車行駛速度.

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》?碱}集(19):2.3 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

司機(jī)在駕駛汽車時(shí),發(fā)現(xiàn)緊急情況到踩下剎車需要一段時(shí)間,這段時(shí)間叫反應(yīng)時(shí)間.之后還會(huì)繼續(xù)行駛一段距離.我們把司機(jī)從發(fā)現(xiàn)緊急情況到汽車停止所行駛的這段距離叫“剎車距離”(如圖).
已知汽車的剎車距離s(單位:m)與車速v(單位:m/s)之同有如下關(guān)系:s=tv+kv2其中t為司機(jī)的反應(yīng)時(shí)間(單位:s),k為制動(dòng)系數(shù).某機(jī)構(gòu)為測(cè)試司機(jī)飲酒后剎車距離的變化,對(duì)某種型號(hào)的汽車進(jìn)行了“醉漢”駕車測(cè)試,已知該型號(hào)汽車的制動(dòng)系數(shù)k=0.08,并測(cè)得志愿者在未飲酒時(shí)的反應(yīng)時(shí)間t=0.7s
(1)若志愿者未飲酒,且車速為11m/s,則該汽車的剎車距離為多少m(精確到0.1m);
(2)當(dāng)志愿者在喝下一瓶啤酒半小時(shí)后,以17m/s的速度駕車行駛,測(cè)得剎車距離為46m.假如該志愿者當(dāng)初是以11m/s的車速行駛,則剎車距離將比未飲酒時(shí)增加多少?(精確到0.1m)
(3)假如你以后駕駛該型號(hào)的汽車以11m/s至17m/s的速度行駛,且與前方車輛的車距保持在40m至50m之間.若發(fā)現(xiàn)前方車輛突然停止,為防止“追尾”.則你的反應(yīng)時(shí)間應(yīng)不超過多少秒?(精確到0.01s)

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》?碱}集(19):2.3 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

某企業(yè)信息部進(jìn)行市場(chǎng)調(diào)研發(fā)現(xiàn):
信息一:如果單獨(dú)投資A種產(chǎn)品,則所獲利潤(rùn)yA(萬元)與投資金額x(萬元)之間存在正比例函數(shù)關(guān)系:yA=kx,并且當(dāng)投資5萬元時(shí),可獲利潤(rùn)2萬元;
信息二:如果單獨(dú)投資B種產(chǎn)品,則所獲利潤(rùn)yB(萬元)與投資金額x(萬元)之間存在二次函數(shù)關(guān)系:yB=ax2+bx,并且當(dāng)投資2萬元時(shí),可獲利潤(rùn)2.4萬元;當(dāng)投資4萬元,可獲利潤(rùn)3.2萬元.
(1)請(qǐng)分別求出上述的正比例函數(shù)表達(dá)式與二次函數(shù)表達(dá)式;
(2)如果企業(yè)同時(shí)對(duì)A、B兩種產(chǎn)品共投資10萬元,請(qǐng)你設(shè)計(jì)一個(gè)能獲得最大利潤(rùn)的投資方案,并求出按此方案能獲得的最大利潤(rùn)是多少?

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》?碱}集(19):2.3 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

工藝商場(chǎng)按標(biāo)價(jià)銷售某種工藝品時(shí),每件可獲利45元;按標(biāo)價(jià)的八五折銷售該工藝品8件與將標(biāo)價(jià)降低35元銷售該工藝品12件所獲利潤(rùn)相等.
(1)該工藝品每件的進(jìn)價(jià)、標(biāo)價(jià)分別是多少元?
(2)若每件工藝品按(1)中求得的進(jìn)價(jià)進(jìn)貨,標(biāo)價(jià)售出,工藝商場(chǎng)每天可售出該工藝品100件.若每件工藝品降價(jià)1元,則每天可多售出該工藝品4件.問每件工藝品降價(jià)多少元出售,每天獲得的利潤(rùn)最大?獲得的最大利潤(rùn)是多少元?

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》常考題集(19):2.3 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

王師傅有兩塊板材邊角料,其中一塊是邊長(zhǎng)為60cm的正方形板子;另一塊是上底為30cm,下底為120cm,高為60cm的直角梯形板子(如圖①).王師傅想將這兩塊板子裁成兩塊全等的矩形板材.他將兩塊板子疊放在一起,使梯形的兩個(gè)直角頂點(diǎn)分別與正方形的兩個(gè)頂點(diǎn)重合,兩塊板子的重疊部分為五邊形ABCFE圍成的區(qū)域(如圖②).由于受材料紋理的限制,要求裁出的矩形要以點(diǎn)B為一個(gè)頂點(diǎn).
(1)求FC的長(zhǎng);
(2)利用圖②求出矩形頂點(diǎn)B所對(duì)的頂點(diǎn)到BC邊的距離x(cm)為多少時(shí),矩形的面積y(cm2)最大?最大面積是多少?
(3)若想使裁出的矩形為正方形,試求出面積最大的正方形的邊長(zhǎng).

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》?碱}集(19):2.3 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

南博汽車城銷售某種型號(hào)的汽車,每輛進(jìn)貨價(jià)為25萬元,市場(chǎng)調(diào)研表明:當(dāng)銷售價(jià)為29萬元時(shí),平均每周能售出8輛,而當(dāng)銷售價(jià)每降低0.5萬元時(shí),平均每周能多售出4輛.如果設(shè)每輛汽車降價(jià)x萬元,每輛汽車的銷售利潤(rùn)為y萬元.(銷售利潤(rùn)=銷售價(jià)-進(jìn)貨價(jià))
(1)求y與x的函數(shù)關(guān)系式;在保證商家不虧本的前提下,寫出x的取值范圍;
(2)假設(shè)這種汽車平均每周的銷售利潤(rùn)為z萬元,試寫出z與x之間的函數(shù)關(guān)系式;
(3)當(dāng)每輛汽車的定價(jià)為多少萬元時(shí),平均每周的銷售利潤(rùn)最大,最大利潤(rùn)是多少?

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》?碱}集(19):2.3 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

通過實(shí)驗(yàn)研究,專家們發(fā)現(xiàn):初中學(xué)生聽課的注意力指標(biāo)數(shù)是隨著老師講課時(shí)間的變化而變化的,講課開始時(shí),學(xué)生的興趣激增,中間有一段時(shí)間的興趣保持平穩(wěn)狀態(tài),隨后開始分散.學(xué)生注意力指標(biāo)數(shù)y隨時(shí)間x(分鐘)變化的函數(shù)圖象如圖所示(y越大表示注意力越集中).當(dāng)0≤x≤10時(shí),圖象是拋物線的一部分,當(dāng)10≤x≤20和20≤x≤40時(shí),圖象是線段.
(1)當(dāng)0≤x≤10時(shí),求注意力指標(biāo)數(shù)y與時(shí)間x的函數(shù)關(guān)系式;
(2)一道數(shù)學(xué)綜合題,需要講解24分鐘.問老師能否經(jīng)過適當(dāng)安排,使學(xué)生聽這道題時(shí),注意力的指標(biāo)數(shù)都不低于36?

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》常考題集(19):2.3 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

某水果經(jīng)銷商上月份銷售一種新上市的水果,平均售價(jià)為10元/千克,月銷售量為1000千克.經(jīng)市場(chǎng)調(diào)查,若將該種水果價(jià)格調(diào)低至x元/千克,則本月份銷售量y(千克)與x(元/千克)之間滿足一次函數(shù)關(guān)系y=kx+b.且當(dāng)x=7時(shí),y=2000;x=5時(shí),y=4000.
(1)求y與x之間的函數(shù)關(guān)系式;
(2)已知該種水果上月份的成本價(jià)為5元/千克,本月份的成本價(jià)為4元/千克,要使本月份銷售該種水果所獲利潤(rùn)比上月份增加20%,同時(shí)又要讓顧客得到實(shí)惠,那么該種水果價(jià)格每千克應(yīng)調(diào)低至多少元?[利潤(rùn)=售價(jià)-成本價(jià)].

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》?碱}集(19):2.3 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

某公司試銷一種成本為30元/件的新產(chǎn)品,按規(guī)定試銷時(shí)的銷售單價(jià)不低于成本單價(jià),又不高于80元/件,試銷中每天的銷售量y(件)與銷售單價(jià)x(元/件)滿足下表中的函數(shù)關(guān)系.
x(元/件)3540455055
y(件)550500450400350
(1)試求y與x之間的函數(shù)表達(dá)式;
(2)設(shè)公司試銷該產(chǎn)品每天獲得的毛利潤(rùn)為S(元),求S與x之間的函數(shù)表達(dá)式(毛利潤(rùn)=銷售總價(jià)-成本總價(jià));
(3)當(dāng)銷售單價(jià)定為多少時(shí),該公司試銷這種產(chǎn)品每天獲得的毛利潤(rùn)最大?最大毛利潤(rùn)是多少?此時(shí)每天的銷售量是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案