相關(guān)習(xí)題
 0  127430  127438  127444  127448  127454  127456  127460  127466  127468  127474  127480  127484  127486  127490  127496  127498  127504  127508  127510  127514  127516  127520  127522  127524  127525  127526  127528  127529  127530  127532  127534  127538  127540  127544  127546  127550  127556  127558  127564  127568  127570  127574  127580  127586  127588  127594  127598  127600  127606  127610  127616  127624  366461 

科目: 來源:第6章《二次函數(shù)》常考題集(18):6.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

研究所對某種新型產(chǎn)品的產(chǎn)銷情況進(jìn)行了研究,為投資商在甲、乙兩地生產(chǎn)并銷售該產(chǎn)品提供了如下成果:第一年的年產(chǎn)量為x(噸)時,所需的全部費(fèi)用y(萬元)與x滿足關(guān)系式y(tǒng)=x2+5x+90,投入市場后當(dāng)年能全部售出,且在甲、乙兩地每噸的售價p,p(萬元)均與x滿足一次函數(shù)關(guān)系.(注:年利潤=年銷售額-全部費(fèi)用)
(1)成果表明,在甲地生產(chǎn)并銷售x噸時,P=-x+14,請你用含x的代數(shù)式表示甲地當(dāng)年的年銷售額,并求年利潤W(萬元)與x之間的函數(shù)關(guān)系式;
(2)成果表明,在乙地生產(chǎn)并銷售x噸時,P=-+n(n為常數(shù)),且在乙地當(dāng)年的最大年利潤為35萬元.試確定n的值;
(3)受資金、生產(chǎn)能力等多種因素的影響,某投資商計劃第一年生產(chǎn)并銷售該產(chǎn)品18噸,根據(jù)(1),(2)中的結(jié)果,請你通過計算幫他決策,選擇在甲地還是乙地產(chǎn)銷才能獲得較大的年利潤?
參考公式:拋物線y=ax2+bx+c(a≠0)的頂點(diǎn)坐標(biāo)是

查看答案和解析>>

科目: 來源:第6章《二次函數(shù)》?碱}集(18):6.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

小李想用籬笆圍成一個周長為60米的矩形場地,矩形面積S(單位:平方米)隨矩形一邊長x(單位:米)的變化而變化.
(1)求S與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(2)當(dāng)x是多少時,矩形場地面積S最大,最大面積是多少?

查看答案和解析>>

科目: 來源:第6章《二次函數(shù)》?碱}集(18):6.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

某賓館客房部有60個房間供游客居住,當(dāng)每個房間的定價為每天200元時,房間可以住滿.當(dāng)每個房間每天的定價每增加10元時,就會有一個房間空閑.對有游客入住的房間,賓館需對每個房間每天支出20元的各種費(fèi)用.
設(shè)每個房間每天的定價增加x元.求:
(1)房間每天的入住量y(間)關(guān)于x(元)的函數(shù)關(guān)系式;
(2)該賓館每天的房間收費(fèi)z(元)關(guān)于x(元)的函數(shù)關(guān)系式;
(3)該賓館客房部每天的利潤w(元)關(guān)于x(元)的函數(shù)關(guān)系式;當(dāng)每個房間的定價為每天多少元時,w有最大值?最大值是多少?

查看答案和解析>>

科目: 來源:第6章《二次函數(shù)》?碱}集(18):6.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

如圖,某隧道橫截面的上下輪廓線分別由拋物線對稱的一部分和矩形的一部分構(gòu)成,最大高度為6米,底部寬度為12米.現(xiàn)以O(shè)點(diǎn)為原點(diǎn),OM所在直線為x軸建立直角坐標(biāo)系.
(1)直接寫出點(diǎn)M及拋物線頂點(diǎn)P的坐標(biāo);
(2)求出這條拋物線的函數(shù)解析式;
(3)若要搭建一個矩形“支撐架”AD+DC+CB,使C、D點(diǎn)在拋物線上,A、B點(diǎn)在地面OM上,這個“支撐架”總長的最大值是多少?

查看答案和解析>>

科目: 來源:第6章《二次函數(shù)》?碱}集(18):6.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

為了落實國務(wù)院副總理李克強(qiáng)同志到恩施考察時的指示精神,最近,州委州政府又出臺了一系列“三農(nóng)”優(yōu)惠政策,使農(nóng)民收入大幅度增加.某農(nóng)戶生產(chǎn)經(jīng)銷一種農(nóng)副產(chǎn)品,已知這種產(chǎn)品的成本價為20元/千克.市場調(diào)查發(fā)現(xiàn),該產(chǎn)品每天的銷售量w(千克)與銷售價x(元/千克)有如下關(guān)系:w=-2x+80.設(shè)這種產(chǎn)品每天的銷售利潤為y(元).
(1)求y與x之間的函數(shù)關(guān)系式;
(2)當(dāng)銷售價定為多少元時,每天的銷售利潤最大?最大利潤是多少?
(3)如果物價部門規(guī)定這種產(chǎn)品的銷售價不得高于28元/千克,該農(nóng)戶想要每天獲得150元的銷售利潤,銷售價應(yīng)定為多少元?

查看答案和解析>>

科目: 來源:第6章《二次函數(shù)》?碱}集(18):6.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

如圖,足球場上守門員在O處開出一高球,球從離地面1米的A處飛出(A在y軸上),運(yùn)動員乙在距O點(diǎn)6米的B處發(fā)現(xiàn)球在自己頭的正上方達(dá)到最高點(diǎn)M,距地面約4米高,球落地后又一次彈起.據(jù)實驗測算,足球在草坪上彈起后的拋物線與原來的拋物線形狀相同,最大高度減少到原來最大高度的一半.
(1)求足球開始飛出到第一次落地時,該拋物線的表達(dá)式.
(2)足球第一次落地點(diǎn)C距守門員多少米?(取4=7)
(3)運(yùn)動員乙要搶到第二個落點(diǎn)D,他應(yīng)再向前跑多少米?(取=5)

查看答案和解析>>

科目: 來源:第6章《二次函數(shù)》?碱}集(18):6.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

雜技團(tuán)進(jìn)行雜技表演,演員從蹺蹺板右端A處彈跳到人梯頂端椅子B處,其身體(看成一點(diǎn))的路線是拋物線y=x2+3x+1的一部分,如圖所示.
(1)求演員彈跳離地面的最大高度;
(2)已知人梯高BC=3.4米,在一次表演中,人梯到起跳點(diǎn)A的水平距離是4米,問這次表演是否成功?請說明理由.

查看答案和解析>>

科目: 來源:第6章《二次函數(shù)》?碱}集(18):6.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

某種爆竹點(diǎn)燃后,其上升高度h(米)和時間t(秒)符合關(guān)系式h=vt+gt2(0<t≤2),其中重力加速度g以10米/秒2計算.這種爆竹點(diǎn)燃后以v=20米/秒的初速度上升.(上升過程中,重力加速度g為-10米/秒2;下降過程中,重力加速度g為10米/秒2
(1)這種爆竹在地面上點(diǎn)燃后,經(jīng)過多少時間離地15米?
(2)在爆竹點(diǎn)燃后的1.5秒至1.8秒這段時間內(nèi),判斷爆竹是上升,或是下降,并說明理由.

查看答案和解析>>

科目: 來源:第6章《二次函數(shù)》常考題集(18):6.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

某農(nóng)戶計劃利用現(xiàn)有的一面墻再修四面墻,建造如圖所示的長方體水池,培育不同品種的魚苗.他已備足可以修高為1.5m、長18m的墻的材料準(zhǔn)備施工,設(shè)圖中與現(xiàn)有一面墻垂直的三面墻的長度都為xm,即AD=EF=BC=xm.(不考慮墻的厚度)
(1)若想水池的總?cè)莘e為36m3,x應(yīng)等于多少?
(2)求水池的總?cè)莘eV與x的函數(shù)關(guān)系式,并直接寫出x的取值范圍;
(3)若想使水池的總?cè)莘eV最大,x應(yīng)為多少?最大容積是多少?

查看答案和解析>>

同步練習(xí)冊答案