相關(guān)習(xí)題
 0  127500  127508  127514  127518  127524  127526  127530  127536  127538  127544  127550  127554  127556  127560  127566  127568  127574  127578  127580  127584  127586  127590  127592  127594  127595  127596  127598  127599  127600  127602  127604  127608  127610  127614  127616  127620  127626  127628  127634  127638  127640  127644  127650  127656  127658  127664  127668  127670  127676  127680  127686  127694  366461 

科目: 來源:第6章《二次函數(shù)》中考題集(38):6.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

如圖,在平面直角坐標(biāo)系中,直線y=-x-與x軸交于點A,與y軸交于點C,拋物線y=ax2-x+c(a≠0)經(jīng)過A,B,C三點.
(1)求過A,B,C三點拋物線的解析式并求出頂點F的坐標(biāo);
(2)在拋物線上是否存在點P,使△ABP為直角三角形?若存在,直接寫出P點坐標(biāo);若不存在,請說明理由;
(3)試探究在直線AC上是否存在一點M,使得△MBF的周長最小?若存在,求出M點的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目: 來源:第6章《二次函數(shù)》中考題集(38):6.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

如圖,現(xiàn)有兩塊全等的直角三角形紙板Ⅰ,Ⅱ,它們兩直角邊的長分別為1和2.將它們分別放置于平面直角坐標(biāo)系中的△AOB,△COD處,直角邊OB,OD在x軸上.一直尺從上方緊靠兩紙板放置,讓紙板Ⅰ沿直尺邊緣平行移動.當(dāng)紙板Ⅰ移動至△PEF處時,設(shè)PE,PF與OC分別交于點M,N,與x軸分別交于點G,H.
(1)求直線AC所對應(yīng)的函數(shù)關(guān)系式;
(2)當(dāng)點P是線段AC(端點除外)上的動點時,試探究:
①點M到x軸的距離h與線段BH的長是否總相等?請說明理由;
②兩塊紙板重疊部分(圖中的陰影部分)的面積S是否存在最大值?若存在,求出這個最大值及S取最大值時點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目: 來源:第6章《二次函數(shù)》中考題集(39):6.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

如圖1,OABC是一張放在平面直角坐標(biāo)系中的矩形紙片,O為原點,點A在x軸的正半軸上,點C在y軸的正半軸上,OA=5,OC=4.
(1)在OC邊上取一點D,將紙片沿AD翻折,使點O落在BC邊上的點E處,求D,E兩點的坐標(biāo);
(2)如圖2,若AE上有一動點P(不與A,E重合)自A點沿AE方向E點勻速運動,運動的速度為每秒1個單位長度,設(shè)運動的時間為t秒(0<t<5),過P點作ED的平行線交AD于點M,過點M作AE平行線交DE于點N.求四邊形PMNE的面積S與時間t之間的函數(shù)關(guān)系式;當(dāng)t取何值時,s有最大值,最大值是多少?
(3)在(2)的條件下,當(dāng)t為何值時,以A,M,E為頂點的三角形為等腰三角形,并求出相應(yīng)的時刻點M的坐標(biāo)?

查看答案和解析>>

科目: 來源:第6章《二次函數(shù)》中考題集(39):6.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

直線y=-x+6分別與x軸、y軸交于點A、B,經(jīng)過A、B兩點的拋物線與x軸的另一交點為C,且其對稱軸為x=3.
(1)求這條拋物線對應(yīng)的函數(shù)關(guān)系式;
(2)設(shè)D(x,y)是拋物線在第一象限內(nèi)的一個點,點D到直線AB的距離為d、試寫出d關(guān)于x的函數(shù)關(guān)系式,這個函數(shù)是否有最大值或最小值?如果有,并求這個值和此時點D的坐標(biāo);如果沒有,說明理由.

查看答案和解析>>

科目: 來源:第6章《二次函數(shù)》中考題集(39):6.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

如圖,在直角坐標(biāo)系中,以點M(3,0)為圓心,以6為半徑的圓分別交x軸的正半軸于點A,交x軸的負(fù)半軸交于點B,交y軸的正半軸于點C,過點C的直線交x軸的負(fù)半軸于點D(-9,0)
(1)求A,C兩點的坐標(biāo);
(2)求證:直線CD是⊙M的切線;
(3)若拋物線y=x2+bx+c經(jīng)過M,A兩點,求此拋物線的解析式;
(4)連接AC,若(3)中拋物線的對稱軸分別與直線CD交于點E,與AC交于點F.如果點P是拋物線上的動點,是否存在這樣的點P,使得S△PAM:S△CEF=:3?若存在,請求出此時點P的坐標(biāo);若不存在,請說明理由.(注意:本題中的結(jié)果均保留根號)

查看答案和解析>>

科目: 來源:第6章《二次函數(shù)》中考題集(39):6.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

已知:如圖,Rt△AOB的兩直角邊OA、OB分別在x軸的正半軸和y軸的負(fù)半軸上,C為OA上一點且OC=OB,拋物線y=(x-2)(x-m)-(p-2)(p-m)(m、p為常數(shù)且m+2≥2p>0)經(jīng)過A、C兩點.
(1)用m、p分別表示OA、OC的長;
(2)當(dāng)m、p滿足什么關(guān)系時,△AOB的面積最大.

查看答案和解析>>

科目: 來源:第6章《二次函數(shù)》中考題集(39):6.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

如圖,等腰直角三角形紙片ABC中,AC=BC=4,∠ACB=90°,直角邊AC在x軸上,B點在第二象限,A(1,0),AB交y軸于E,將紙片過E點折疊使BE與EA所在直線重合,得到折痕EF(F在x軸上),再展開還原沿EF剪開得到四邊形BCFE,然后把四邊形BCFE從E點開始沿射線EA平移,至B點到達(dá)A點停止.設(shè)平移時間為t(s),移動速度為每秒1個單位長度,平移中四邊形BCFE與△AEF重疊的面積為S.
(1)求折痕EF的長;
(2)是否存在某一時刻t使平移中直角頂點C經(jīng)過拋物線y=x2+4x+3的頂點?若存在,求出t值;若不存在,請說明理由;
(3)直接寫出S與t的函數(shù)關(guān)系式及自變量t的取值范圍.

查看答案和解析>>

科目: 來源:第6章《二次函數(shù)》中考題集(39):6.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

已知拋物線y=ax2+bx+c的頂點A在x軸上,與y軸的交點為B(0,1),且b=-4ac.
(1)求拋物線的解析式;
(2)在拋物線上是否存在一點C,使以BC為直徑的圓經(jīng)過拋物線的頂點A?若不存在,說明理由;若存在,求出點C的坐標(biāo),并求出此時圓的圓心點P的坐標(biāo);
(3)根據(jù)(2)小題的結(jié)論,你發(fā)現(xiàn)B、P、C三點的橫坐標(biāo)之間、縱坐標(biāo)之間分別有何關(guān)系?

查看答案和解析>>

科目: 來源:第6章《二次函數(shù)》中考題集(39):6.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

△ABC中,∠C=90°,∠A=60°,AC=2cm.長為1cm的線段MN在△ABC的邊AB上沿AB方向以1cm/s的速度向點B運動(運動前點M與點A重合).過M,N分別作AB的垂線交直角邊于P,Q兩點,線段MN運動的時間為ts.
(1)若△AMP的面積為y,寫出y與t的函數(shù)關(guān)系式(寫出自變量t的取值范圍);
(2)線段MN運動過程中,四邊形MNQP有可能成為矩形嗎?若有可能,求出此時t的值;若不可能,說明理由;
(3)t為何值時,以C,P,Q為頂點的三角形與△ABC相似?

查看答案和解析>>

科目: 來源:第6章《二次函數(shù)》中考題集(39):6.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

已知:拋物線y=ax2+bx+c(a≠0),頂點C(1,-3),與x軸交于A,B兩點,A(-1,0).
(1)求這條拋物線的解析式;
(2)如圖,以AB為直徑作圓,與拋物線交于點D,與拋物線對稱軸交于點E,依次連接A,D,B,E,點P為線段AB上一個動點(P與A,B兩點不重合),過點P作PM⊥AE于M,PN⊥DB于N,請判斷是否為定值?若是,請求出此定值;若不是,請說明理由;
(3)在(2)的條件下,若點S是線段EP上一點,過點S作FG⊥EP,F(xiàn)G分別與邊AE,BE相交于點F,G(F與A,E不重合,G與E,B不重合),請判斷是否成立?若成立,請給出證明;若不成立,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案