相關習題
 0  129025  129033  129039  129043  129049  129051  129055  129061  129063  129069  129075  129079  129081  129085  129091  129093  129099  129103  129105  129109  129111  129115  129117  129119  129120  129121  129123  129124  129125  129127  129129  129133  129135  129139  129141  129145  129151  129153  129159  129163  129165  129169  129175  129181  129183  129189  129193  129195  129201  129205  129211  129219  366461 

科目: 來源:第26章《圓》中考題集(12):26.1 旋轉(解析版) 題型:解答題

已知:如圖①所示,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且點B,A,D在一條直線上,連接BE,CD,M,N分別為BE,CD的中點.
(1)求證:①BE=CD;②△AMN是等腰三角形;
(2)在圖①的基礎上,將△ADE繞點A按順時針方向旋轉180°,其他條件不變,得到圖②所示的圖形.請直接寫出(1)中的兩個結論是否仍然成立;
(3)在(2)的條件下,請你在圖②中延長ED交線段BC于點P.求證:△PBD∽△AMN.

查看答案和解析>>

科目: 來源:第26章《圓》中考題集(12):26.1 旋轉(解析版) 題型:解答題

如圖①,將矩形ABCD沿著對角線AC分割,得到△ABC和△ACD,將△ACD繞點A按逆時針方向旋轉α度,使D,A,B三點在同一直線上,得到圖②,再把圖②中的△ADE沿著AB方向平移s格,使點D與點A重合,得到圖③,設EF與AC相交于點G.
請解答以下問題:
(1)上述過程中,α=______度,s=______格;
(2)在圖③中,除了△ABC∽△EAF以外,還能找出對相似三角形;
(3)請寫一對你在圖③中找出的相似三角形,并加以證明.

查看答案和解析>>

科目: 來源:第26章《圓》中考題集(12):26.1 旋轉(解析版) 題型:解答題

如圖1,若四邊形ABCD、四邊形GFED都是正方形,顯然圖中有AG=CE,AG⊥CE;
(1)當正方形GFED繞D旋轉到如圖2的位置時,AG=CE是否成立?若成立,請給出證明;若不成立,請說明理由;
(2)當正方形GFED繞D旋轉到如圖3的位置時,延長CE交AG于H,交AD于M.
①求證:AG⊥CH;
②當AD=4,DG=時,求CH的長.

查看答案和解析>>

科目: 來源:第26章《圓》中考題集(12):26.1 旋轉(解析版) 題型:解答題

有兩張完全重合的矩形紙片,小亮同學將其中一張繞點A順時針旋轉90°后得到矩形AMEF(如圖1),連接BD、MF,若此時他測得BD=8cm,∠ADB=30度.
(1)試探究線段BD與線段MF的關系,并簡要說明理由;
(2)小紅同學用剪刀將△BCD與△MEF剪去,與小亮同學繼續(xù)探究.他們將△ABD繞點A順時針旋轉得△AB1D1,AD1交FM于點K(如圖2),設旋轉角為β(0°<β<90°),當△AFK為等腰三角形時,請直接寫出旋轉角β的度數(shù);
(3)若將△AFM沿AB方向平移得到△A2F2M2(如圖3),F(xiàn)2M2與AD交于點P,A2M2與BD交于點N,當NP∥AB時,求平移的距離是多少?

查看答案和解析>>

科目: 來源:第26章《圓》中考題集(12):26.1 旋轉(解析版) 題型:解答題

在△ABC中,AB=AC=2,∠A=90°,取一塊含45°角的直角三角尺,將直角頂點放在斜邊BC邊的中點O處(如圖1),繞O點順時針方向旋轉,使90°角的兩邊與Rt△ABC的兩邊AB,AC分別相交于點E,F(xiàn)(如圖2).設BE=x,CF=y.
(1)探究:在圖2中,線段AE與CF之間有怎樣的大小關系?試證明你的結論;
(2)若將直角三角尺45°角的頂點放在斜邊BC邊的中點O處(如圖3),繞O點順時針方向旋轉,其他條件不變.
①試寫出y與x的函數(shù)解析式,以及x的取值范圍;
②將三角尺繞O點旋轉(如圖4)的過程中,△OEF是否能成為等腰三角形?若能,直接寫出△OEF為等腰三角形時x的值;若不能,請說明理由.

查看答案和解析>>

科目: 來源:第26章《圓》中考題集(12):26.1 旋轉(解析版) 題型:解答題

如圖1,一副直角三角板滿足AB=BC,AC=DE,∠ABC=∠DEF=90°,∠EDF=30°
操作:將三角板DEF的直角頂點E放置于三角板ABC的斜邊AC上,再將三角板DEF繞點E旋轉,并使邊DE與邊AB交于點P,邊EF與邊BC于點Q.
探究一:在旋轉過程中,
(1)如圖2,當時,EP與EQ滿足怎樣的數(shù)量關系?并給出證明;
(2)如圖3,當時,EP與EQ滿足怎樣的數(shù)量關系?并說明理由;
(3)根據(jù)你對(1)、(2)的探究結果,試寫出當時,EP與EQ滿足的數(shù)量關系式為______,其中m的取值范圍是______

查看答案和解析>>

科目: 來源:第26章《圓》中考題集(12):26.1 旋轉(解析版) 題型:解答題

在平面內(nèi),先將一個多邊形以點O為位似中心放大或縮小,使所得多邊形與原多邊形對應線段的比為k,并且原多邊形上的任一點P,它的對應點P′在線段OP或其延長線上;接著將所得多邊形以點O為旋轉中心,逆時針旋轉一個角度θ,這種經(jīng)過和旋轉的圖形變換叫做旋轉相似變換,記為O(k,θ),其中點O叫做旋轉相似中心,k叫做相似比,θ叫做旋轉角.
(1)填空:
①如圖1,將△ABC以點A為旋轉相似中心,放大為原來的2倍,再逆時針旋轉60°,得到△ADE,這個旋轉相似變換記為A(______,______);
②如圖2,△ABC是邊長為1cm的等邊三角形,將它作旋轉相似變換A(,90°),得到△ADE,則線段BD的長為______cm;
(2)如圖3,分別以銳角三角形ABC的三邊AB,BC,CA為邊向外作正方形ADEB,BFGC,CHIA,點O1,O2,O3分別是這三個正方形的對角線交點,試分別利用△AO1O3與△ABI,△CIB與△CAO2之間的關系,運用旋轉相似變換的知識說明線段O1O3與AO2之間的關系.

查看答案和解析>>

科目: 來源:第26章《圓》中考題集(12):26.1 旋轉(解析版) 題型:解答題

(北師大版)已知:將一副三角板(Rt△ABC和Rt△DEF)如圖1擺放,點E、A、D、B在一條直線上,且D是AB的中點.將Rt△DEF繞點D順時針方向旋轉角α(0°<α<90°),在旋轉過程中,直線DE、AC相交于點M,直線DF、BC相交于點N,分別過點M、N作直線AB的垂線,垂足為G、H.
(1)當α=30°時(如圖2),求證:AG=DH;
(2)當α=60°時(如圖3),(1)中的結論是否成立?請寫出你的結論,并說明理由;
(3)當0°<α<90°時,(1)中的結論是否成立?請寫出你的結論,并根據(jù)圖④說明理由.

查看答案和解析>>

科目: 來源:第26章《圓》中考題集(12):26.1 旋轉(解析版) 題型:解答題

在左圖的方格紙中有一個Rt△ABC(A、B、C三點均為格點),∠C=90°
(1)請你畫出將Rt△ABC繞點C順時針旋轉90°后所得到的Rt△A′B′C′,其中A、B的對應點分別是A′、B′(不必寫畫法);
(2)設(1)中AB的延長線與A′B′相交于D點,方格紙中每一個小正方形的邊長為1,試求BD的長(精確到0.1).

查看答案和解析>>

科目: 來源:第26章《圓》中考題集(12):26.1 旋轉(解析版) 題型:解答題

等腰△ABC,AB=AC=8,∠BAC=120°,P為BC的中點,小慧拿著含30°角的透明三角板,使30°角的頂點落在點P,三角板繞P點旋轉.
(1)如圖a,當三角板的兩邊分別交AB、AC于點E、F時.求證:△BPE∽△CFP;
(2)操作:將三角板繞點P旋轉到圖b情形時,三角板的兩邊分別交BA的延長線、邊AC于點E、F.
①探究1:△BPE與△CFP還相似嗎?(只需寫出結論)
②探究2:連接EF,△BPE與△PFE是否相似?請說明理由;
③設EF=m,△EPF的面積為S,試用m的代數(shù)式表示S.

查看答案和解析>>

同步練習冊答案