相關習題
 0  134674  134682  134688  134692  134698  134700  134704  134710  134712  134718  134724  134728  134730  134734  134740  134742  134748  134752  134754  134758  134760  134764  134766  134768  134769  134770  134772  134773  134774  134776  134778  134782  134784  134788  134790  134794  134800  134802  134808  134812  134814  134818  134824  134830  134832  134838  134842  134844  134850  134854  134860  134868  366461 

科目: 來源:2010-2011學年江蘇省揚州市邗江區(qū)九年級(上)期末數(shù)學試卷(解析版) 題型:解答題

計算或化簡:
(1)
(2)

查看答案和解析>>

科目: 來源:2010-2011學年江蘇省揚州市邗江區(qū)九年級(上)期末數(shù)學試卷(解析版) 題型:解答題

如圖,△AOB是一個格點三角形(頂點均在格點上的三角形),對△AOB依次進行以點O為位似中心的位似變換、軸對稱變換和平移變換后得到格點△A′O′B′,設點P(x,y) 為△AOB上的任一點.
(1)在網(wǎng)格中分別畫出一種位似、軸對稱、平移變換后相對應的圖形;
(2)根據(jù)(1)畫出的圖形,位似、軸對稱變換后點P的對應點P1、P2的坐標可以分別表示為:P1______;P2______.

查看答案和解析>>

科目: 來源:2010-2011學年江蘇省揚州市邗江區(qū)九年級(上)期末數(shù)學試卷(解析版) 題型:解答題

(1)若五個數(shù)據(jù)2,-1,3,x,5的極差為8,求x的值;
(2)已知六個數(shù)據(jù)-3,-2,1,3,6,x的中位數(shù)為1,求這組數(shù)據(jù)的方差.

查看答案和解析>>

科目: 來源:2010-2011學年江蘇省揚州市邗江區(qū)九年級(上)期末數(shù)學試卷(解析版) 題型:解答題

如圖,矩形紙片ABCD中AB=6cm,BC=10cm,小明同學先折出矩形紙片ABCD的對角線AC,再分別把△ABC、△ADC沿對角線AC翻折交AD、BC于點F、E.
(1)判斷小明所折出的四邊形AECF的形狀,并說明理由;
(2)求四邊形AECF的面積.

查看答案和解析>>

科目: 來源:2010-2011學年江蘇省揚州市邗江區(qū)九年級(上)期末數(shù)學試卷(解析版) 題型:解答題

已知關于x的一元二次方程x2-6x+k=0有兩個實數(shù)根.
(1)求k的取值范圍;
(2)如果k取符合條件的最大整數(shù),且一元二次方程x2-6x+k=0與x2+mx-1=0有一個相同的根,求常數(shù)m的值.

查看答案和解析>>

科目: 來源:2010-2011學年江蘇省揚州市邗江區(qū)九年級(上)期末數(shù)學試卷(解析版) 題型:解答題

閱讀以下材料:
若關于x的三次方程x3+ax2+bx+c=0(a、b、c為整數(shù))有整數(shù)解n,則將n代入方程x3+ax2+bx+c=0得:n3+an2+bn+c=0
∴c=-n3-an2-bn=-n(n2+an+b)
∵a、b、n都是整數(shù)∴n2+an+b是整數(shù)∴n是c的因數(shù).
上述過程說明:整數(shù)系數(shù)方程x3+ax2+bx+c=0的整數(shù)解n只能是常數(shù)項c的因數(shù).
如:∵方程x3+4x2+3x-2=0中常數(shù)項-2的因數(shù)為:±1和±2,
∴將±1和±2分別代入方程x3+4x2+3x-2=0得:x=-2是該方程的整數(shù)解,-1、1、2不是方程的整數(shù)解.
解決下列問題:
(1)根據(jù)上面的學習,方程x3+2x2+6x+5=0的整數(shù)解可能______;
(2)方程-2x3+4x2+12x-14=0有整數(shù)解嗎?若有,求出整數(shù)解;若沒有,說明理由.

查看答案和解析>>

科目: 來源:2010-2011學年江蘇省揚州市邗江區(qū)九年級(上)期末數(shù)學試卷(解析版) 題型:解答題

如圖,已知矩形ABCD中,BC=6,AB=8,延長AD到點E,使AE=15,連接BE交AC于點P.
(1)求AP的長;
(2)若以點A為圓心,AP為半徑作⊙A,試判斷線段BE與⊙A的位置關系并說明理由;
(3)已知以點A為圓心,r1為半徑的動⊙A,使點D在動⊙A的內(nèi)部,點B在動⊙A的外部.
①求動⊙A的半徑r1的取值范圍;
②若以點C為圓心,r2為半徑的動⊙C與動⊙A相切,求r2的取值范圍.

查看答案和解析>>

科目: 來源:2010-2011學年江蘇省揚州市邗江區(qū)九年級(上)期末數(shù)學試卷(解析版) 題型:解答題

如圖,已知一次函數(shù)y=0.5x+2的圖象與x軸交于點A,與二次函數(shù)y=ax2+bx+c的圖象交于y軸上的一點B,二次函數(shù)y=ax2+bx+c的圖象與x軸只有唯一的交點C,且OC=2.
(1)求二次函數(shù)y=ax2+bx+c的解析式;
(2)設一次函數(shù)y=0.5x+2的圖象與二次函數(shù)y=ax2+bx+c的圖象的另一交點為D,已知P為x軸上的一個動點,且△PBD為直角三角形,求點P的坐標.

查看答案和解析>>

科目: 來源:2010-2011學年江蘇省揚州市邗江區(qū)九年級(上)期末數(shù)學試卷(解析版) 題型:解答題

如圖,梯形ABCD是世紀廣場的示意圖,上底AD=90m,下底BC=150m,高100m,虛線MN是梯形ABCD的中位線.要設計修建寬度相同的一條橫向和兩條縱向大理石通道,橫向通道EGHF位于MN兩旁,且EF、GH與MN之間的距離相等,兩條縱向通道均與BC垂直,設通道寬度為xm.
(1)試用含x的代數(shù)式表示橫向通道EGHF的面積s1;
(2)若三條通道的面積和恰好是梯形ABCD面積的時,求通道寬度為x;
(3)經(jīng)測算大理石通道的修建費用y1(萬元)與通道寬度為xm的關系式為:y1=14x,廣場其余部分的綠化費用為0.05萬元/m2,若設計要求通道寬度x≤8m,則寬度x為多少時,世紀廣場修建總費用最少?最少費用為多少?

查看答案和解析>>

科目: 來源:2010-2011學年江蘇省揚州市邗江區(qū)九年級(上)期末數(shù)學試卷(解析版) 題型:解答題

已知:正方形ABCD的邊長為4,⊙O交正方形ABCD的對角線AC所在直線于點T,連接TO交⊙O于點S.

(1)如圖1,當⊙O經(jīng)過A、D兩點且圓心O在正方形ABCD內(nèi)部時,連接DT、DS.
①試判斷線段DT、DS的數(shù)量關系和位置關系;    
②求AS+AT的值;
(2)如圖2,當⊙O經(jīng)過A、D兩點且圓心O在正方形ABCD外部時,連接DT、DS.求AS-AT的值;
(3)如圖3,延長DA到點E,使AE=AD,當⊙O經(jīng)過A、E兩點時,連接ET、ES.根據(jù)(1)、(2)計算,通過觀察、分析,對線段
AS、AT的數(shù)量關系提出問題并解答.

查看答案和解析>>

同步練習冊答案