相關習題
 0  141316  141324  141330  141334  141340  141342  141346  141352  141354  141360  141366  141370  141372  141376  141382  141384  141390  141394  141396  141400  141402  141406  141408  141410  141411  141412  141414  141415  141416  141418  141420  141424  141426  141430  141432  141436  141442  141444  141450  141454  141456  141460  141466  141472  141474  141480  141484  141486  141492  141496  141502  141510  366461 

科目: 來源:第20章《二次函數(shù)和反比例函數(shù)》常考題集(42):20.7 反比例函數(shù)的圖象、性質(zhì)和應用(解析版) 題型:解答題

如圖所示,小華設計了一個探究杠桿平衡條件的實驗:在一根勻質(zhì)的木桿中點O左側(cè)固定位置B處懸掛重物A,在中點O右側(cè)用一個彈簧秤向下拉,改變彈簧秤與點O的距離x(cm),觀察彈簧秤的示數(shù)y(N)的變化情況.實驗數(shù)據(jù)記錄如下:
x(cm)…10152025 30…
y(N)…30201512 10…
(1)把上表中x,y的各組對應值作為點的坐標,在坐標系中描出相應的點,用平滑曲線連接這些點并觀察所得的圖象,猜測y(N)與x(cm)之間的函數(shù)關系,并求出函數(shù)關系式;
(2)當彈簧秤的示數(shù)為24N時,彈簧秤與O點的距離是多少cm?隨著彈簧秤與O點的距離不斷減小,彈簧秤上的示數(shù)將發(fā)生怎樣的變化?

查看答案和解析>>

科目: 來源:第20章《二次函數(shù)和反比例函數(shù)》?碱}集(42):20.7 反比例函數(shù)的圖象、性質(zhì)和應用(解析版) 題型:解答題

某?萍夹〗M進行野外考察,途中遇到一片十幾米寬的爛泥濕地.為了安全、迅速通過這片濕地,他們沿著前進路線鋪了若干塊木塊,構(gòu)筑成一條臨時近道.木板對地面的壓強P(Pa)是木板面積S(m2)的反比例函數(shù),其圖象如下圖所示.
(1)請直接寫出這一函數(shù)表達式和自變量取值范圍;
(2)當木板面積為0.2m2時,壓強是多少?
(3)如果要求壓強不超過6000Pa,木板的面積至少要多大?

查看答案和解析>>

科目: 來源:第20章《二次函數(shù)和反比例函數(shù)》?碱}集(42):20.7 反比例函數(shù)的圖象、性質(zhì)和應用(解析版) 題型:解答題

某人采用藥熏法進行室內(nèi)消毒,已知藥物燃燒時室內(nèi)每立方米空氣中的含藥量y(毫克)與時間x(分鐘)成正比例,藥物燃燒后,y與x成反比例(如圖所示),現(xiàn)測得藥物10分鐘燃完,此時室內(nèi)空氣中每立方米的含藥量為8毫克,請根據(jù)題中所提供的信息,解答下列問題:
(1)藥物燃燒時,y與x的函數(shù)關系式為______,自變量x的取值范圍是______;藥物燃燒后,y與x的函數(shù)關系式為______.
(2)研究表明,當空氣中每立方米的含藥量低于2毫克時,人方可進入室內(nèi),那么從消毒開始,至少需要經(jīng)過______分鐘后,人才可以回到室內(nèi).
(3)當空氣中每立方米的含藥量不低于5毫克且持續(xù)時間不低于10分鐘時,才能有效殺滅空氣中的病菌,那么此次消毒是否有效,為什么?

查看答案和解析>>

科目: 來源:第20章《二次函數(shù)和反比例函數(shù)》常考題集(42):20.7 反比例函數(shù)的圖象、性質(zhì)和應用(解析版) 題型:解答題

某廠從2005年起開始投入技術(shù)改進資金,經(jīng)技術(shù)改進后,其產(chǎn)品的生產(chǎn)成本不斷降低,具體數(shù)據(jù)如下表:
年    度2006200720082009
投入技改資金x(萬元)2.5344.5
產(chǎn)品成本y(萬元/件)7.264.54
(1)請你認真分析表中數(shù)據(jù),從你所學習過的一次函數(shù)、二次函數(shù)和反比例函數(shù)中確定哪種函數(shù)能表示其變化規(guī)律,說明確定是這種函數(shù)而不是其它函數(shù)的理由,并求出它的解析式;
(2)按照這種變化規(guī)律,若2010年已投入技改資金5萬元.
①預計生產(chǎn)成本每件比2009年降低多少萬元?
②如果打算在2009年把每件產(chǎn)品成本降低到3.2萬元,則還需投入技改資金多少萬元?(結(jié)果精確到0.01萬元)

查看答案和解析>>

科目: 來源:第20章《二次函數(shù)和反比例函數(shù)》?碱}集(42):20.7 反比例函數(shù)的圖象、性質(zhì)和應用(解析版) 題型:解答題

為預防“流感“,某單位對辦公室進行“藥熏消毒”.已知藥物燃燒時,室內(nèi)每立方米空氣中的含藥量y(毫克)與燃燒時間x(分鐘)成正比例;燃燒后,y與x成反比例(如圖所示).現(xiàn)測得藥物8分鐘燃畢,此時辦公室內(nèi)每立方米空氣中含藥量為6毫克,據(jù)以上信息:
(1)分別求藥物燃燒時和燃燒后,y與x的函數(shù)關系式;
(2)研究表明,當空氣中含藥量低于1.6毫克/立方米時,工作人員才能回到辦公室,那么從消毒開始,經(jīng)多長時間,工作人員才可以回到辦公室?

查看答案和解析>>

科目: 來源:第20章《二次函數(shù)和反比例函數(shù)》?碱}集(42):20.7 反比例函數(shù)的圖象、性質(zhì)和應用(解析版) 題型:解答題

制作一種產(chǎn)品,需先將材料加熱達到60℃后,再進行操作.設該材料溫度為y(℃),從加熱開始計算的時間為x(分鐘).據(jù)了解,該材料加熱時,溫度y與時間x成一次函數(shù)關系;停止加熱進行操作時,溫度y與時間x成反比例關系(如圖).已知該材料在操作加工前的溫度為15℃,加熱5分鐘后溫度達到60℃.
(1)分別求出將材料加熱和停止加熱進行操作時,y與x的函數(shù)關系式;
(2)根據(jù)工藝要求,當材料的溫度低于15℃時,須停止操作,那么從開始加熱到停止操作,共經(jīng)歷了多少時間?

查看答案和解析>>

科目: 來源:第20章《二次函數(shù)和反比例函數(shù)》?碱}集(42):20.7 反比例函數(shù)的圖象、性質(zhì)和應用(解析版) 題型:解答題

你吃過拉面嗎?實際上在做拉面的過程中就滲透著數(shù)學知識:一定體積的面團做成拉面,面條的總長度y(m)是面條的粗細(橫截面積)s(mm2)的反比例函數(shù),其圖象如圖所示.
(1)寫出y與s的函數(shù)關系式;
(2)求當面條粗1.6mm2時,面條的總長度是多少米?

查看答案和解析>>

科目: 來源:第20章《二次函數(shù)和反比例函數(shù)》?碱}集(42):20.7 反比例函數(shù)的圖象、性質(zhì)和應用(解析版) 題型:解答題

在壓力不變的情況下,某物體承受的壓強P(pa)是它的受力面積Sm2的反比例函數(shù),其圖象如圖所示.
(1)求P與S之間的函數(shù)關系式;
(2)求當S=0.5m2時物體承受的壓強P.

查看答案和解析>>

科目: 來源:第20章《二次函數(shù)和反比例函數(shù)》常考題集(42):20.7 反比例函數(shù)的圖象、性質(zhì)和應用(解析版) 題型:解答題

某氣球內(nèi)充滿了一定質(zhì)量的氣球,當溫度不變時,氣球內(nèi)氣球的氣壓p(千帕)是氣球的體積V(米2)的反比例函數(shù),其圖象如圖所示.(千帕是一種壓強單位)
(1)寫出這個函數(shù)的解析式;
(2)當氣球的體積為0.8立方米時,氣球內(nèi)的氣壓是多少千帕?
(3)當氣球內(nèi)的氣壓大于144千帕時,氣球?qū)⒈ǎ瑸榱税踩鹨,氣球的體積應不小于多少立方米?

查看答案和解析>>

科目: 來源:第20章《二次函數(shù)和反比例函數(shù)》?碱}集(42):20.7 反比例函數(shù)的圖象、性質(zhì)和應用(解析版) 題型:解答題

某商場出售一批進價為2元的賀卡,在市場營銷中發(fā)現(xiàn),此商品的日銷售單價x(單位:元)與日銷售數(shù)量y(單位:張)之間有如下關系:
銷售單價x(元)3456
日銷售量y(元)20151210
(1)根據(jù)表中數(shù)據(jù)在平面直角坐標系中描出實數(shù)對(x,y)的對應點;
(2)確定y與x之間的函數(shù)關系式,并畫出圖象;
(3)設銷售此賀卡的日純利潤為w元,試求出w與x之間的函數(shù)關系式.若物價局規(guī)定該賀卡售價最高不超過10元/張,請你求出日銷售單價x定為多少元時,才能獲得最大日銷售利潤?

查看答案和解析>>

同步練習冊答案