相關(guān)習(xí)題
 0  141511  141519  141525  141529  141535  141537  141541  141547  141549  141555  141561  141565  141567  141571  141577  141579  141585  141589  141591  141595  141597  141601  141603  141605  141606  141607  141609  141610  141611  141613  141615  141619  141621  141625  141627  141631  141637  141639  141645  141649  141651  141655  141661  141667  141669  141675  141679  141681  141687  141691  141697  141705  366461 

科目: 來源:第20章《二次函數(shù)和反比例函數(shù)》中考題集(45):20.5 二次函數(shù)的一些應(yīng)用(解析版) 題型:解答題

已知拋物線y=(k-1)x2+(2+4k)x+1-4k過點(diǎn)A(4,0).
(1)試確定拋物線的解析式及頂點(diǎn)B的坐標(biāo);
(2)在y軸上確定一點(diǎn)P,使線段AP+BP最短,求出P點(diǎn)的坐標(biāo);
(3)設(shè)M為線段AP的中點(diǎn),試判斷點(diǎn)B與以AP為直徑的⊙M的位置關(guān)系,并說明理由.

查看答案和解析>>

科目: 來源:第20章《二次函數(shù)和反比例函數(shù)》中考題集(45):20.5 二次函數(shù)的一些應(yīng)用(解析版) 題型:解答題

如圖,己知拋物線y=x2+px+q與x軸交于A、B兩點(diǎn),∠ACB=90°,交y軸負(fù)半軸于C點(diǎn),點(diǎn)B在點(diǎn)A的右側(cè),且
(1)求拋物線的解析式,
(2)求△ABC的外接圓面積;
(3)設(shè)拋物線y=x2+px+q的頂點(diǎn)為D,求四邊形ACDB的面積;
(4)在拋物線y=x2+px+q上是否存在點(diǎn)P,使得△PAB的面積為2?如果有,這樣的點(diǎn)有幾個?寫出它們的坐標(biāo);如果沒有,說明理由.

查看答案和解析>>

科目: 來源:第20章《二次函數(shù)和反比例函數(shù)》中考題集(45):20.5 二次函數(shù)的一些應(yīng)用(解析版) 題型:解答題

如圖所示,己知點(diǎn)P是x軸上一點(diǎn),以P為圓心的⊙P分別與x軸、y軸交于點(diǎn)A、B和C、D,其中A(-3,0),B(1,0).過點(diǎn)C作⊙P的切線交x軸于點(diǎn)E.
(1)求直線CE的解析式;
(2)求過A、B、C三點(diǎn)的拋物線解析式;
(3)第(2)問中的拋物線的頂點(diǎn)是否在直線CE上,請說明理由;
(4)點(diǎn)F是線段CE上一動點(diǎn),點(diǎn)F的橫坐標(biāo)為m,問m在什么范圍內(nèi)時,直線FB與⊙P相交?

查看答案和解析>>

科目: 來源:第20章《二次函數(shù)和反比例函數(shù)》中考題集(45):20.5 二次函數(shù)的一些應(yīng)用(解析版) 題型:解答題

圖1是邊長分別為4和3的兩個等邊三角形紙片ABC和C′D′E′疊放在一起(C與C′重合).
(1)操作:固定△ABC,將△C′D′E′繞點(diǎn)C順時針旋轉(zhuǎn)30°得到△CDE,連接AD、BE,CE的延長線交AB于F(圖2);
探究:在圖2中,線段BE與AD之間有怎樣的大小關(guān)系?試證明你的結(jié)論.
(2)操作:將圖2中的△CDE,在線段CF上沿著CF方向以每秒1個單位的速度平移,平移后的△CDE設(shè)為△PQR(圖3);
探究:設(shè)△PQR移動的時間為x秒,△PQR與△ABC重疊部分的面積為y,求y與x之間的函數(shù)解析式,并寫出函數(shù)自變量x的取值范圍.
(3)操作:圖1中△C′D′E′固定,將△ABC移動,使頂點(diǎn)C落在C′E′的中點(diǎn),邊BC交D′E′于點(diǎn)M,邊AC交D′C′于點(diǎn)N,設(shè)∠AC C′=α(30°<α<90°(圖4);
探究:在圖4中,線段C′N•E′M的值是否隨α的變化而變化?如果沒有變化,請你求出C′N•E′M的值,如果有變化,請你說明理由.

查看答案和解析>>

科目: 來源:第20章《二次函數(shù)和反比例函數(shù)》中考題集(45):20.5 二次函數(shù)的一些應(yīng)用(解析版) 題型:解答題

已知:如圖,△ABC中,∠C=90°,AC=3厘米,CB=4厘米.兩個動點(diǎn)P、Q分別從A、C兩點(diǎn)同時按順時針方向沿△ABC的邊運(yùn)動.當(dāng)點(diǎn)Q運(yùn)動到點(diǎn)A時,P、Q兩點(diǎn)運(yùn)動即停止.點(diǎn)P、Q的運(yùn)動速度分別為1厘米/秒、2厘米/秒,設(shè)點(diǎn)P運(yùn)動時間為t(秒).
(1)當(dāng)時間t為何值時,以P、C、Q三點(diǎn)為頂點(diǎn)的三角形的面積(圖中的陰影部分)等于2厘米2;
(2)當(dāng)點(diǎn)P、Q運(yùn)動時,陰影部分的形狀隨之變化.設(shè)PQ與△ABC圍成陰影部分面積為S(厘米2),求出S與時間t的函數(shù)關(guān)系式,并指出自變量t的取值范圍;
(3)點(diǎn)P、Q在運(yùn)動的過程中,陰影部分面積S有最大值嗎?若有,請求出最大值;若沒有,請說明理由.

查看答案和解析>>

科目: 來源:第20章《二次函數(shù)和反比例函數(shù)》中考題集(45):20.5 二次函數(shù)的一些應(yīng)用(解析版) 題型:解答題

如圖一,平面直角坐標(biāo)系中有一張矩形紙片OABC,O為坐標(biāo)原點(diǎn),A點(diǎn)坐標(biāo)為(10,0),C點(diǎn)坐標(biāo)為(0,6),D是BC邊上的動點(diǎn)(與點(diǎn)B,C不重合),現(xiàn)將△COD沿OD翻折,得到△FOD;再在AB邊上選取適當(dāng)?shù)狞c(diǎn)E,將△BDE沿DE翻折,得到△GDE,并使直線DG、DF重合.
(1)如圖二,若翻折后點(diǎn)F落在OA邊上,求直線DE的函數(shù)關(guān)系式;
(2)設(shè)D(a,6),E(10,b),求b關(guān)于a的函數(shù)關(guān)系式,并求b的最小值;
(3)一般地,請你猜想直線DE與拋物線y=-x2+6的公共點(diǎn)的個數(shù),在圖二的情形中通過計算驗證你的猜想;如果直線DE與拋物線y=-x2+6始終有公共點(diǎn),請在圖一中作出這樣的公共點(diǎn).

查看答案和解析>>

科目: 來源:第20章《二次函數(shù)和反比例函數(shù)》中考題集(45):20.5 二次函數(shù)的一些應(yīng)用(解析版) 題型:解答題

已知拋物線y=ax2+bx+c(a≠0)與x軸交于不同的兩點(diǎn)A(x1,0)和B(x2,0),與y軸的正半軸交于點(diǎn)C.如果x1、x2是方程x2-x-6=0的兩個根(x1<x2),且△ABC的面積為
(1)求此拋物線的解析式;
(2)求直線AC和BC的方程;
(3)如果P是線段AC上的一個動點(diǎn)(不與點(diǎn)A、C重合),過點(diǎn)P作直線y=m(m為常數(shù)),與直線BC交于點(diǎn)Q,則在x軸上是否存在點(diǎn)R,使得△PQR為等腰直角三角形?若存在,求出點(diǎn)R的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目: 來源:第20章《二次函數(shù)和反比例函數(shù)》中考題集(45):20.5 二次函數(shù)的一些應(yīng)用(解析版) 題型:解答題

如圖,正方形ABCD的邊長為5cm,Rt△EFG中,∠G=90°,F(xiàn)G=4cm,EG=3cm,且點(diǎn)B、F、C、G在直線l上,△EFG由F、C重合的位置開始,以1cm/秒的速度沿直線l按箭頭所表示的方向作勻速直線運(yùn)動.
(1)當(dāng)△EFG運(yùn)動時,求點(diǎn)E分別運(yùn)動到CD上和AB上的時間;
(2)設(shè)x(秒)后,△EFG與正方形ABCD重合部分的面積為y(cm2),求y與x的函數(shù)關(guān)系式;
(3)在下面的直角坐標(biāo)系中,畫出0≤x≤2時中函數(shù)的大致圖象;如果以O(shè)為圓心的圓與該圖象交于點(diǎn)P(x,),與x軸交于點(diǎn)A、B(A在B的左側(cè)),求∠PAB的度數(shù).

查看答案和解析>>

科目: 來源:第20章《二次函數(shù)和反比例函數(shù)》中考題集(46):20.5 二次函數(shù)的一些應(yīng)用(解析版) 題型:解答題

已知:如圖,拋物線C1,C2關(guān)于x軸對稱;拋物線C1,C3關(guān)于y軸對稱.拋物線C1,C2,C3與x軸相交于A、B、C、D四點(diǎn);與y相交于E、F兩點(diǎn);H、G、M分別為拋物線C1,C2,C3的頂點(diǎn).HN垂直于x軸,垂足為N,且|OE|>|HN|,|AB|≠|(zhì)HG|
(1)A、B、C、D、E、F、G、H、M9個點(diǎn)中,四個點(diǎn)可以連接成一個四邊形,請你用字母寫出下列特殊四邊形:菱形______;等腰梯形______;平行四邊形______;梯形______;(每種特殊四邊形只能寫一個,寫錯、多寫記0分)
(2)證明其中任意一個特殊四邊形;
(3)寫出你證明的特殊四邊形的性質(zhì).

查看答案和解析>>

科目: 來源:第20章《二次函數(shù)和反比例函數(shù)》中考題集(46):20.5 二次函數(shù)的一些應(yīng)用(解析版) 題型:解答題

如圖,已知拋物線y=x2-2x+n與x軸交于不同的兩點(diǎn)A,B,其頂點(diǎn)是C,D是拋物線的對稱軸與x軸的交點(diǎn).
(1)求實數(shù)n的取值范圍.
(2)求頂點(diǎn)C的坐標(biāo);
(3)求線段AB的長;
(4)若直線y=x+1分別交x軸于E,交y軸于F,問△BDC與△EOF是否有可能全等?如果有可能全等請給出證明;如果不可能全等請說明理由.

查看答案和解析>>

同步練習(xí)冊答案