相關(guān)習(xí)題
 0  145381  145389  145395  145399  145405  145407  145411  145417  145419  145425  145431  145435  145437  145441  145447  145449  145455  145459  145461  145465  145467  145471  145473  145475  145476  145477  145479  145480  145481  145483  145485  145489  145491  145495  145497  145501  145507  145509  145515  145519  145521  145525  145531  145537  145539  145545  145549  145551  145557  145561  145567  145575  366461 

科目: 來源:第4章《相似三角形》中考題集(13):4.3 兩個三角形相似的判定(解析版) 題型:解答題

如圖,在平面直角坐標(biāo)系中,點A的坐標(biāo)為(1,),△AOB的面積是
(1)求點B的坐標(biāo);
(2)求過點A、O、B的拋物線的解析式;
(3)在(2)中拋物線的對稱軸上是否存在點C,使△AOC的周長最?若存在,求出點C的坐標(biāo);若不存在,請說明理由;
(4)在(2)中x軸下方的拋物線上是否存在一點P,過點P作x軸的垂線,交直線AB于點D,線段OD把△AOB分成兩個三角形,使其中一個三角形面積與四邊形BPOD面積比為2:3?若存在,求出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目: 來源:第4章《相似三角形》中考題集(13):4.3 兩個三角形相似的判定(解析版) 題型:解答題

在平面直角坐標(biāo)系中,已知拋物線y=-x2+bx+c與x軸交于點A、B點A在點B的左側(cè),與y軸的正半軸交于點C,頂點為E.
(1)若b=2,c=3,求此時拋物線頂點E的坐標(biāo);
(2)將(1)中的拋物線向下平移,若平移后,在四邊形ABEC中滿足S△BCE=S△ABC,求此時直線BC的解析式;
(3)將(1)中的拋物線作適當(dāng)?shù)钠揭,若平移后,在四邊形ABEC中滿足S△BCE=2S△AOC,且頂點E恰好落在直線y=-4x+3上,求此時拋物線的解析式.

查看答案和解析>>

科目: 來源:第4章《相似三角形》中考題集(13):4.3 兩個三角形相似的判定(解析版) 題型:解答題

已知拋物線上有不同的兩點E(k+3,-k2+1)和F(-k-1,-k2+1).
(1)求拋物線的解析式;
(2)如圖,拋物線與x軸和y軸的正半軸分別交于點A和B,M為AB的中點,∠PMQ在AB的同側(cè)以M為中心旋轉(zhuǎn),且∠PMQ=45°,MP交y軸于點C,MQ交x軸于點D.設(shè)AD的長為m(m>0),BC的長為n,求n和m之間的函數(shù)關(guān)系式;
(3)當(dāng)m,n為何值時,∠PMQ的邊過點F?

查看答案和解析>>

科目: 來源:第4章《相似三角形》中考題集(13):4.3 兩個三角形相似的判定(解析版) 題型:解答題

如圖,拋物線y=ax2+bx+1與x軸交于兩點A(-1,0),B(1,0),與y軸交于點C.
(1)求拋物線的解析式;
(2)過點B作BD∥CA拋物線交于點D,求四邊形ACBD的面積;
(3)在x軸下方的拋物線上是否存在點M,過M作MN⊥x軸于點N,使以A、M、N為頂點的三角形與△BCD相似?若存在,則求出點M的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目: 來源:第4章《相似三角形》中考題集(13):4.3 兩個三角形相似的判定(解析版) 題型:解答題

在平面直角坐標(biāo)系xOy中,拋物線的解析式是y=+1,點C的坐標(biāo)為(-4,0),平行四邊形OABC的頂點A,B在拋物線上,AB與y軸交于點M,已知點Q(x,y)在拋物線上,點P(t,0)在x軸上.
(1)寫出點M的坐標(biāo);
(2)當(dāng)四邊形CMQP是以MQ,PC為腰的梯形時.
①求t關(guān)于x的函數(shù)解析式和自變量x的取值范圍;
②當(dāng)梯形CMQP的兩底的長度之比為1:2時,求t的值.

查看答案和解析>>

科目: 來源:第4章《相似三角形》中考題集(13):4.3 兩個三角形相似的判定(解析版) 題型:解答題

已知拋物線y=ax2+bx+c(a≠0)經(jīng)過點B(2,0)和點C(0,8),且它的對稱軸是直線x=-2.
(1)求拋物線與x軸的另一交點A的坐標(biāo);
(2)求此拋物線的解析式;
(3)連接AC,BC,若點E是線段AB上的一個動點(與點A,點B)不重合,過點E作EF∥AC交BC于點F,連接CE,設(shè)AE的長為m,△CEF的面積為S,求S與m之間的函數(shù)關(guān)系式;
(4)在(3)的基礎(chǔ)上試說明S是否存在最大值?若存在,請求出S的最大值,并求出此時點E的坐標(biāo),判斷此時△BCE的形狀;若不存在,請說明理由.

查看答案和解析>>

科目: 來源:第4章《相似三角形》中考題集(13):4.3 兩個三角形相似的判定(解析版) 題型:解答題

如圖,在平面直角坐標(biāo)系中,四邊形OABC為矩形,OA=3,OC=4,P為直線AB上一動點,將直線OP繞點P逆時針方向旋轉(zhuǎn)90°交直線BC于點Q.
(1)當(dāng)點P在線段AB上運動(不與A,B重合)時,求證:OA•BQ=AP•BP;
(2)在(1)成立的條件下,設(shè)點P的橫坐標(biāo)為m,線段CQ的長度為l,求出l關(guān)于m的函數(shù)解析式,并判斷l(xiāng)是否存在最小值?若存在,請求出最小值;若不存在,請說明理由;
(3)直線AB上是否存在點P,使△POQ為等腰三角形?若存在,請求出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目: 來源:第4章《相似三角形》中考題集(13):4.3 兩個三角形相似的判定(解析版) 題型:解答題

已知直角坐標(biāo)系中菱形ABCD的位置如圖,C,D兩點的坐標(biāo)分別為(4,0),(0,3).現(xiàn)有兩動點P,Q分別從A,C同時出發(fā),點P沿線段AD向終點D運動,點Q沿折線CBA向終點A運動,設(shè)運動時間為t秒.
(1)填空:菱形ABCD的邊長是______、面積是______、高BE的長是______;
(2)探究下列問題:
①若點P的速度為每秒1個單位,點Q的速度為每秒2個單位.當(dāng)點Q在線段BA上時,求△APQ的面積S關(guān)于t的函數(shù)關(guān)系式,以及S的最大值;
②若點P的速度為每秒1個單位,點Q的速度變?yōu)槊棵雓個單位,在運動過程中,任何時刻都有相應(yīng)的k值,使得△APQ沿它的一邊翻折,翻折前后兩個三角形組成的四邊形為菱形.請?zhí)骄慨?dāng)t=4秒時的情形,并求出k的值.

查看答案和解析>>

科目: 來源:第4章《相似三角形》中考題集(14):4.3 兩個三角形相似的判定(解析版) 題型:解答題

如圖①,正方形ABCD中,點A、B的坐標(biāo)分別為(0,10),(8,4),點C在第一象限.動點P在正方形ABCD的邊上,從點A出發(fā)沿A?B?C?D勻速運動,同時動點Q以相同速度在x軸正半軸上運動,當(dāng)P點到達D點時,兩點同時停止運動,設(shè)運動的時間為t秒.
(1)當(dāng)P點在邊AB上運動時,點Q的橫坐標(biāo)x(長度單位)關(guān)于運動時間t(秒)的函數(shù)圖象如圖②所示,請寫出點Q開始運動時的坐標(biāo)及點P運動速度;
(2)求正方形邊長及頂點C的坐標(biāo);
(3)在(1)中當(dāng)t為何值時,△OPQ的面積最大,并求此時P點的坐標(biāo);
(4)如果點P、Q保持原速度不變,當(dāng)點P沿A?B?C?D勻速運動時,OP與PQ能否相等?若能,寫出所有符合條件的t的值;若不能,請說明理由.

查看答案和解析>>

科目: 來源:第4章《相似三角形》中考題集(14):4.3 兩個三角形相似的判定(解析版) 題型:解答題

如圖,點A、B的坐標(biāo)分別為(4,0)、(0,8),點C是線段OB上一動點,點E在x軸正半軸上,四邊形OEDC是矩形,且OE=2OC.設(shè)OE=t(t>0),矩形OEDC與△AOB重合部分的面積為S.
根據(jù)上述條件,回答下列問題:
(1)當(dāng)矩形OEDC的頂點D在直線AB上時,求t的值;
(2)當(dāng)t=4時,求S的值;
(3)直接寫出S與t的函數(shù)關(guān)系式(不必寫出解題過程);
(4)若S=12,則t=______.

查看答案和解析>>

同步練習(xí)冊答案