相關(guān)習(xí)題
 0  145770  145778  145784  145788  145794  145796  145800  145806  145808  145814  145820  145824  145826  145830  145836  145838  145844  145848  145850  145854  145856  145860  145862  145864  145865  145866  145868  145869  145870  145872  145874  145878  145880  145884  145886  145890  145896  145898  145904  145908  145910  145914  145920  145926  145928  145934  145938  145940  145946  145950  145956  145964  366461 

科目: 來源:第2章《二次函數(shù)》中考題集(21):2.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

春節(jié)期間某水庫養(yǎng)殖場為適應(yīng)市場需求,連續(xù)用20天時(shí)間,采用每天降低水位以減少捕撈成本的辦法,對(duì)水庫中某種鮮魚進(jìn)行捕撈、銷售.九(1)班數(shù)學(xué)建模興趣小組根據(jù)調(diào)查,整理出第x天(1≤x≤20且x為整數(shù))的捕撈與銷售的相關(guān)信息如表:
鮮魚銷售單價(jià)(元/kg)20
單位捕撈成本(元/kg)5-
捕撈量(kg)950-10x
(1)在此期間該養(yǎng)殖場每天的捕撈量與前一天末的捕撈量相比是如何變化的?
(2)假定該養(yǎng)殖場每天捕撈和銷售的鮮魚沒有損失,且能在當(dāng)天全部售出,求第x天的收入y(元)與x(天)之間的函數(shù)關(guān)系式?(當(dāng)天收入=日銷售額-日捕撈成本)
(3)試說明(2)中的函數(shù)y隨x的變化情況,并指出在第幾天y取得最大值,最大值是多少?

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》中考題集(21):2.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

面對(duì)國際金融危機(jī).某鐵路旅行社為吸引市民組團(tuán)去某風(fēng)景區(qū)旅游,現(xiàn)推出如下標(biāo)準(zhǔn):某單位組織員工去該風(fēng)景區(qū)旅游,設(shè)有x人參加,應(yīng)付旅游費(fèi)y元.
(1)請寫出y與x的函數(shù)關(guān)系式;
(2)若該單位現(xiàn)有45人,本次旅游至少去26人,則該單位最多應(yīng)付旅游費(fèi)多少元?
 人數(shù) 不超過25人超過25人但不超過50人 超過50人 
 人均旅游費(fèi) 1500元每增加1人,人均旅游費(fèi)降低20元 1000元 

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》中考題集(21):2.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

某商場將進(jìn)價(jià)為2000元的冰箱以2400元售出,平均每天能售出8臺(tái),為了配合國家“家電下鄉(xiāng)”政策的實(shí)施,商場決定采取適當(dāng)?shù)慕祪r(jià)措施.調(diào)查表明:這種冰箱的售價(jià)每降低50元,平均每天就能多售出4臺(tái).
(1)假設(shè)每臺(tái)冰箱降價(jià)x元,商場每天銷售這種冰箱的利潤是y元,請寫出y與x之間的函數(shù)表達(dá)式;(不要求寫自變量的取值范圍)
(2)商場要想在這種冰箱銷售中每天盈利4800元,同時(shí)又要使百姓得到實(shí)惠,每臺(tái)冰箱應(yīng)降價(jià)多少元?
(3)每臺(tái)冰箱降價(jià)多少元時(shí),商場每天銷售這種冰箱的利潤最高?最高利潤是多少?

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》中考題集(21):2.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

某商品的進(jìn)價(jià)為每件40元,售價(jià)為每件50元,每個(gè)月可賣出210件;如果每件商品的售價(jià)每上漲1元,則每個(gè)月少賣10件(每件售價(jià)不能高于65元).設(shè)每件商品的售價(jià)上漲x元(x為正整數(shù)),每個(gè)月的銷售利潤為y元.
(1)求y與x的函數(shù)關(guān)系式并直接寫出自變量x的取值范圍;
(2)每件商品的售價(jià)定為多少元時(shí),每個(gè)月可獲得最大利潤?最大的月利潤是多少元?
(3)每件商品的售價(jià)定為多少元時(shí),每個(gè)月的利潤恰為2200元?根據(jù)以上結(jié)論,請你直接寫出售價(jià)在什么范圍時(shí),每個(gè)月的利潤不低于2200元?

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》中考題集(21):2.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

種植能手小李的實(shí)驗(yàn)田可種植A種作物或B種作物(A、B兩種作物不能同時(shí)種植),原來的種植情況如表.通過參加農(nóng)業(yè)科技培訓(xùn),小李提高了種植技術(shù).現(xiàn)準(zhǔn)備在原有的基礎(chǔ)上增種,以提高總產(chǎn)量.但根據(jù)科學(xué)種植的經(jīng)驗(yàn),每增種1棵A種或B種作物,都會(huì)導(dǎo)致單棵作物平均產(chǎn)量減少0.2千克,而且每種作物的增種數(shù)量都不能超過原有數(shù)量的80%.設(shè)A種作物增種m棵,總產(chǎn)量為yA千克;B種作物增種n棵,總產(chǎn)量為yB千克.
種植品種
數(shù)量
A種作物B中作物
原種植量(棵)5060
原產(chǎn)量(千克/棵)3026
(1)A種作物增種m棵后,單棵平均產(chǎn)量為______千克;B種作物增種n棵后,單棵平均產(chǎn)量為______千克;
(2)求yA與m之間的函數(shù)關(guān)系式及yB與n之間的函數(shù)關(guān)系式;
(3)求提高種植技術(shù)后,小李增種何種作物可獲得最大總產(chǎn)量?最大總產(chǎn)量是多少千克?

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》中考題集(21):2.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

某批發(fā)市場批發(fā)甲、乙兩種水果,根據(jù)以往經(jīng)驗(yàn)和市場行情,預(yù)計(jì)夏季某一段時(shí)間內(nèi),甲種水果的銷售利潤y(萬元)與進(jìn)貨量x(噸)近似滿足函數(shù)關(guān)系y=0.3x;乙種水果的銷售利潤y(萬元)與進(jìn)貨量x(噸)近似滿足函數(shù)關(guān)系y=ax2+bx(其中a≠0,a,b為常數(shù)),且進(jìn)貨量x為1噸時(shí),銷售利潤y為1.4萬元;進(jìn)貨量x為2噸時(shí),銷售利潤y為2.6萬元.
(1)求y(萬元)與x(噸)之間的函數(shù)關(guān)系式.
(2)如果市場準(zhǔn)備進(jìn)甲、乙兩種水果共10噸,設(shè)乙種水果的進(jìn)貨量為t噸,請你寫出這兩種水果所獲得的銷售利潤之和W(萬元)與t(噸)之間的函數(shù)關(guān)系式.并求出這兩種水果各進(jìn)多少噸時(shí)獲得的銷售利潤之和最大,最大利潤是多少?

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》中考題集(21):2.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

為把產(chǎn)品打入國際市場,某企業(yè)決定從下面兩個(gè)投資方案中選擇一個(gè)進(jìn)行投資生產(chǎn).方案一:生產(chǎn)甲產(chǎn)品,每件產(chǎn)品成本為a萬美元(a為常數(shù),且3<a<8),每件產(chǎn)品銷售價(jià)為10萬美元,每年最多可生產(chǎn)200件;方案二:生產(chǎn)乙產(chǎn)品,每件產(chǎn)品成本為8萬美元,每件產(chǎn)品銷售價(jià)為18萬美元,每年最多可生產(chǎn)120件.另外,年銷售x件乙產(chǎn)品時(shí)需上交0.05x2萬美元的特別關(guān)稅.在不考慮其它因素的情況下:
(1)分別寫出該企業(yè)兩個(gè)投資方案的年利潤y1、y2與相應(yīng)生產(chǎn)件數(shù)x(x為正整數(shù))之間的函數(shù)關(guān)系式,并指出自變量的取值范圍;
(2)分別求出這兩個(gè)投資方案的最大年利潤;
(3)如果你是企業(yè)決策者,為了獲得最大收益,你會(huì)選擇哪個(gè)投資方案?

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》中考題集(21):2.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

如圖,等腰梯形花圃ABCD的底邊AD靠墻,另三邊用長為40米的鐵欄桿圍成,設(shè)該花圃的腰AB的長為x米.
(1)請求出底邊BC的長(用含x的代數(shù)式表示);
(2)若∠BAD=60°,該花圃的面積為S米2
①求S與x之間的函數(shù)關(guān)系式(要指出自變量x的取值范圍),并求當(dāng)S=93時(shí)x的值;
②如果墻長為24米,試問S有最大值還是最小值?這個(gè)值是多少?

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》中考題集(21):2.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

某水產(chǎn)品養(yǎng)殖企業(yè)為指導(dǎo)該企業(yè)某種水產(chǎn)品的養(yǎng)殖和銷售,對(duì)歷年市場行情和水產(chǎn)品養(yǎng)殖情況進(jìn)行了調(diào)查.調(diào)查發(fā)現(xiàn)這種水產(chǎn)品的每千克售價(jià)y1(元)與銷售月份x(月)滿足關(guān)系式y(tǒng)=-x+36,而其每千克成本y2(元)與銷售月份x(月)滿足的函數(shù)關(guān)系如圖所示.
(1)試確定b、c的值;
(2)求出這種水產(chǎn)品每千克的利潤y(元)與銷售月份x(月)之間的函數(shù)關(guān)系式;
(3)“五•一”之前,幾月份出售這種水產(chǎn)品每千克的利潤最大?最大利潤是多少?

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》中考題集(21):2.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

凱里市某大型酒店有包房100間,在每天晚餐營業(yè)時(shí)間,每間包房收包房費(fèi)100元時(shí),包房便可全部租出;若每間包房收費(fèi)提高20元,則減少10間包房租出,若每間包房收費(fèi)再提高20元,則再減少10間包房租出,以每次提高20元的這種方法變化下去.
(1)設(shè)每間包房收費(fèi)提高x(元),則每間包房的收入為y1(元),但會(huì)減少y2間包房租出,請分別寫出y1,y2與x之間的函數(shù)關(guān)系式.
(2)為了投資少而利潤大,每間包房提高x(元)后,設(shè)酒店老板每天晚餐包房總收入為y(元),請寫出y與x之間的函數(shù)關(guān)系式,求出每間包房每天晚餐應(yīng)提高多少元可獲得最大包房費(fèi)收入,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案