相關習題
 0  358340  358348  358354  358358  358364  358366  358370  358376  358378  358384  358390  358394  358396  358400  358406  358408  358414  358418  358420  358424  358426  358430  358432  358434  358435  358436  358438  358439  358440  358442  358444  358448  358450  358454  358456  358460  358466  358468  358474  358478  358480  358484  358490  358496  358498  358504  358508  358510  358516  358520  358526  358534  366461 

科目: 來源: 題型:

【題目】已知:,是關于的方程的兩個不相等的實數(shù)根,當取最小整數(shù)時,則的值為________

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在正方形中,分別是邊、上的點,且相交于點,則圖中與相似的三角形有________

查看答案和解析>>

科目: 來源: 題型:

【題目】AB上有一點(點不與點、點重合),過點作直線截,使截得的三角形與相似,滿足條件的直線共有(

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目: 來源: 題型:

【題目】(本題滿分10分)(1)如圖1,在ABC中,點DE,Q分別在AB,AC,BC上,且DEBC,AQDE于點P.求證:.

2如圖,在ABC中,BAC=90°,正方形DEFG的四個頂點在ABC的邊上,連接AGAF分別交DEM,N兩點.

如圖2,若AB=AC=1,直接寫出MN的長;

如圖3,求證MN2=DM·EN.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知四邊形ABCD中,EF分別是AB、AD邊上的點,DECF交于點G.

(1)如圖1,若四邊形ABCD是正方形,且DECF,求證:DE=CF;

(2)如圖2,若四邊形ABCD是矩形,且DECF,求證:

(3)如圖3,若四邊形ABCD是平行四邊形,當∠B=EGF時,第(2)問的結(jié)論是否成立?若成立給予證明;若不成立,請說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】圖形的折疊即圖形的翻折或者說是對稱變換.這類問題與生活緊密聯(lián)系,內(nèi)容豐富,解法靈活,具有開放性,可以培養(yǎng)我們的動手能力,空間想象能力和幾何變換的思想.在綜合與實踐課上,每個小組剪了一些如圖1所示的直角三角形紙片(,,),并將紙片中的各內(nèi)角進行折疊操作:

1)如圖2,“奮斗”小組將紙片中的進行折疊,使直角邊落在斜邊上,點落在點位置,折痕為,則的長為______.

2)如圖3,“勤奮”小組將中的進行折疊,使點落在直角邊中點上,折痕為,則的長為______.

3)如圖4,“雄鷹”小組將紙片中的進行折疊,使點落在直角邊延長線上的點處,折痕為,求出的長.

查看答案和解析>>

科目: 來源: 題型:

【題目】在學習《實數(shù)》內(nèi)容時,我們估算帶有根號的無理數(shù)的近似值時,經(jīng)常使用“逐步逼近”的方法來實現(xiàn)的.“逐步逼近”是數(shù)學思維方法的一種重要形式,主要通過構(gòu)造“擬對象”、逐步擴充元素、逐步擴充范圍、放縮逼近、合力逼近等方式解決問題.

例如:估算的近似值時,利用“逐步逼近”法可以得出.請你根據(jù)閱讀內(nèi)容回答下列問題:

1介于連續(xù)的兩個整數(shù),且,那么______,______;

2的整數(shù)部分是______,小數(shù)部分是______;

3)已知的小數(shù)部分為,的小數(shù)部分為,求的值.

查看答案和解析>>

科目: 來源: 題型:

【題目】閱讀下列材料并完成任務:

“最短路徑問題”是數(shù)學中一類具有挑戰(zhàn)性的問題.其實,數(shù)學史上也有不少相關的故事,如下即為其中較為經(jīng)典的一則:古希臘有一位久負盛名的學者,名叫海倫.他精通數(shù)學、物理,聰慧過人.有一天,一位將軍向他請教一個問題:如圖1,將軍從甲地騎馬出發(fā),要到河邊讓馬飲水,然后再回到乙地的馬棚,為使馬走的路程最短,應該讓馬在什么地方飲水?

海倫認為以河邊為鏡面,畫出甲地的鏡像點(垂直河邊的等距離點),然后連接乙地和甲地的鏡像點,會跟河邊相交一點,這個點就是馬飲水的地方,馬走的路程最短(兩點之間直線距離最短).

任務:

1)請你幫海倫在圖1的位置完成作圖,并標出馬飲水的地點(畫出草圖即可);

2)如圖2,的三個頂點的坐標分別為,,.請你在軸上找一點,使得最小,并直接寫出點的坐標(保留作圖痕跡);

應用:

3)如圖3,圓柱形容器高為,底面周長為,在杯內(nèi)壁離杯底的點處有一滴蜂蜜,此時一只螞蟻正好在杯外壁,離杯上沿處的點處,點的水平距離等于底面直徑,求螞蟻從外壁處到達內(nèi)壁處的最短距離.

查看答案和解析>>

科目: 來源: 題型:

【題目】作圖與設計:

在圖1和圖2中,正方形網(wǎng)格中的每個小正方形的邊長都是1,每個小正方形的頂點叫做格點.

1)在圖1中以格點為頂點畫一個三角形,使三角形三邊長分別為,4

2)在圖2中以格點為頂點畫一個面積為10的正方形;

3)在圖3的正方形網(wǎng)格中建立平面直角坐標系,若各頂點的坐標分別為:,,,請你作,使關于軸對稱.

查看答案和解析>>

科目: 來源: 題型:

【題目】探索規(guī)律:下列圖案是山西晉商大院窗格的一部分,其中“○”代表窗紙上所貼的剪紙,隨著基本圖案的增加所貼剪紙“○”的總個數(shù)也在發(fā)生變化.

1)填寫下表:

個圖案

1

2

3

4

……

“○”的總個數(shù)

……

2)請你寫出第個圖案中“○”的總個數(shù)之間的函數(shù)關系式.

查看答案和解析>>

同步練習冊答案